Solutions to Complex Analysis, Stein & Shakarchi

Hyunseo Lee, SNU CLS 23

Preface

Seoul National University’s “Complex Function Theory” course uses “Stein’s Complex Analysis” as a textbook.
However, I've seen many students struggle with their studies because it’s difficult to find solutions to most
problems. I'm sharing my solutions in the hopes that they will be helpful.

This solution includes all Exercises for each chapter. It doesn’t contain solutions to the Problems.

This file is uploaded to https://geniuslhs.com/solutions/stein-complex-analysis.pdf. I recommend checking it

regularly, as it may be updated.

The solutions may contain mathematical errors, so we recommend reading them critically. If you find any math-
ematical errors or typos, please report them to qwerty12021@snu.ac.kr. Thank you for your valuable feedback.

History
« [2025.07.29.] First release.

Chapter 1. Preliminaries to Complex Analysis

1. (a)

21 22

b) 1/z2=%2 <= 2z2=1 < |z|=1
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(d)
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(e) The mapping z > az is a linear transformation, and mapping z — z + b is a translation.

(f) Let 2=z +iy, then |2 =Re(2) +1 <= 22 +y2=2+1 <= 22 +9y>=2"+22+1 <
2
Yy =2zx+1

/
-

(8)

2. Let z = 2 + 1y;, w = &y + iY,. Then
(z,w) = 2125 + Y1 Ys
and
20 = (@1 + 1Y) (Ty — 1Y) = T1Tg + Y1Yp +i(T2Y1 — T1Ya).

Hence

1 1
5[('2’ ’LU) + (w, z)] = §[<va> + (w, Z)] = Re<sz) = <Z,U)>

3. Suppose z = re? satisfies the equation 2" = w. Then
e = 56t = " =5 A e =i,

Since 0 < 0 < 2w, We get 0 < nf < 2n7 and nd = ¢ 4+ 2kw (0 < k < n). Therefore there exists n
solutions;



5 = gret(E+2hm) (0 <k <n).

4. Suppose it is possible to define a total ordering on C. by (i), one and only of the following is true;

i 0,0 1d,0ri=0.

In the first case, use property (iii) twice to get the following

t-12-9>0-0-0

so that —i > 0. Use property (ii) to get —i + ¢ > 0 +¢ = 0 > ¢, which is contradiction.

In the second case we can get a contradiction in a similar way. Indeed,

—i=0 = (—=i)?=0=1i>0 = 0> —i.

The third case is obviously impossible.

5. (a)

(b)

6. (a)

Since z(t*) € Q = Q; U Q,, we get z(t*) € Q, or 2(t*) € Q,,.
First, Suppose z(t*) € ;. Since ), is an open set, there exists > 0 such that D, (z(t*)) C Q. z is
continuous function so there exists small § > 0 such that |z(¢* + 0) — 2(¢*)| < r. Then we get

t* = sup {t:2(s) € Q; forall 0 < s <t} >t*+90,
0<t<1

which is contradiction.

Now we suppose z(t*) € €. Since ), is an open set, there exists a r > 0 such that D, (z(t*)) C §,.
Also, t < t* = 2(t) € Q; holds by the definition of t*. If we take ¢ € [0, 1] slightly smaller than ¢*
so that |z(t) — z(t*)| < r, then z(t) belongs to both §2; and €2, which is contradiction.

First we prove that €}, is an open set. Let w; € ;. Since w; € (2, there exists » > 0 such that
D, (wy) C . Now we can join any z € D, (w;) by a curve contained in {2, by connecting the two
curves; the curve from w to w; which is guaranteed by the definition of 2, and the straight line
from w; to z. Hence D, (w;) C €, and we conclude that 2, is open.

w

Second we prove that (), is an open set. Similar to the argument above, we can see that the points
in the neighborhood of w, € €2, cannot be joined to w. That’s because if it is possible, we can join
wy from w by going through that point, which is contradiction.

Since we can only do one or the other, you can either connect or disconnect the line, 2, and {2, is

disjoint and their union is €.

Finally, since w € ; so 2, is non-empty, we get {0, = Q and 2, = @.

C, is open because neighborhood of some point in €, is also contained in €,. Also, C, is pathwise
connected, because if w;, w, € €, then we can connect w, and w, by going through z. The pathwise
connectedness of C, implies connectedness of C, by Exercise 5.

Now we show that w € €, defines an equivalence relation. This is quiet simple. We can join z to z,
so z € C,. If we can join w to z, then we can also join z to w by reversing that curve. Finally, if we
can join w to z and join ( to z, then we can join w to ¢ by connecting two curves.



(b) Each component have more than one rational points. If there are uncountably many distinct con-
nected components, then there are uncountably many rational points in €2, which is contradiction.
(c) Since Q2 is compact, there exists M > 0 such that z € Q = |z| < M. Now we take z; > M and

consider C, . Clearly this component is unbounded. Also, another unbounded component €., cannot
exist because if it exists, then €, and €, cannot be disjoint.

7. (a) Observe that we can assume z is real. If not, z = re'?, then

_ ‘ e ¥ (w— 2) _
1— (ew)(e=2)

e Wy —r

‘w—z

1 —wz 1_e_i9wr 1—w'r

‘w’—r

with w’ = e .

Now we prove |(w — r)/(1 — wr)| < 1. Square both sides and expand to get
(r—w)(r—w) <1 —rw)(l—rw) < wo(l—r?)<1—7r% < (1—7r%)(1—|w?)>0.
Hence equality holds when |z| = 1 or |w| = 1.
(b) (i) By (a), F'(z) < 1 whenever |z| < 1. Therefore F maps the unit disc to itself. Since F' is product

of holomorphic functions, F is also holomorphic.
() F0)=[(w—=0)/(1-w-0)] = w, Flw) = |(w—w)/(1 —w- w)| = 0.
(iii) |F(z)| = 1 whenever |z| = 1 by (a).
(iv) Observe that

w— 2= — wwz — 1 —ww
F(F(2)) = 17132 W wwz—w+ 2 _ wwz:z

1—w 1 —wz—ww+wz 1—ww

1—wz

F is injective because F'(z) = F(w) = F(F(z)) = F(F(w)) = z = w. F is surjective because
for any w € D, z = F(w) satisfies F'(z) = F(F(w)) = w, so w belongs to image of F.

8. Let f(z +iy) = a(z,y) +ib(x,y), g(a + ib) = c¢(a,b) + id(a,b).
Oh 1(0h . Oh 1 8c+.3d ‘8c+0d
—=—|l——i— =z 4i——i—+ —
0z 2\ 0x dy 2\ 0x Or dy 0Oy

<808a Ocdb  0dOa 3dab> (8d8a 0d 0b  Oc da 80(%)

9201  0box | dady  oboy 9adzr  Oboxr 0Dady 0boy

d90f | 990f
Now we calculate 320, T 5292

99 _ @7 ;09\ _1(0c od\ 1./0d 0c
9z 9a ‘ob)  2\oa o) " 2'\8a @)

o _1(01 01y _1(oa o) 104 o
0z Ox 3y 2\ 0z Oy 2 \0a 0Ob)
Therefore

0g of 180%+80+%§J+M8b ?/06/+808b ddda  9c

820z 4\ 0adx a Jy dr  Ob &y adx 0bdx  0Oady oy

4L %/66/_608(1 dd db 6d8a ad_%ﬂd_acab
4\ 9aox dady  Obdx 8& 8:6 a Oy dr Oboy)’

99 _1(0c od\ 1.(0d o
9z 2\da b ’aa ab

)—‘

Also,



OF _1(0u_o0) 1 0b oo
0z or 0Oy 2 or 0Oy
Therefore

dgof (%8(1_80_%1/60/ od db %l}b/ Oc b 8d@+%

0z 0z Oa Ox a Oy b dy adx ' Obox 8@ y y
+7Z %/66/_808@ od db 8d (‘3d8a 3d+%/6(_8c6b
4 @dx 0Oady Obor 3a oz a Oy dr 9Oboy)’

Finally, we get

ot o =155 255y a2 505s)
Y R T LTI Ry
4 da Oy 0b Ox Oa Oz b Oy
_ o
0z’

Similarly, one can get g’l gg g]j + 89 of 5z by calculation.

9. Let f(re'’) = u(r,0) + iv(r, ), and we calculate f’(z) in two different ways.
When 6 is fixed,

f(r/ew) — f(rew)

f(z) = g}ﬂ /el _ peif
i 20720) +i0(",0) — u(r,0) —iv(r,0) _ 1 (du .0
= (r — r)eif T el \ or or /)’
When r is fixed
ret®) — f(ret
f/(z) = lim f< ) f( )

0=0  r(e? —eif)

oo el? —eif 0 —0 r e

Lo =0 () —J0e?) 11 (ou o
a6 " "0

These two values have to be same, that is,

Comparing real and imaginary parts, we get

Ou 10v 10u  0Ov

ar  ro® rao  or
Now we show that logarithm function with u(r,d) = logr,v(r,0) = 0 is holomorphic. Observe that
Cauchy-Riemann equations holds in an open set because

S

=1, —r-0=0.

therefore log z is holomorphic in the region » > 0 and —7 < 0 < 7.



10. 290 (4 9N(4 9N _ (9 ,0\(2 90
9z0z  \“9:)\“6z) ~ \oz "oy )\ "oy

0? 0? o? 0? 0% 0?

Toe Tor "o T o Y

T ox? Zaxay
Similarly, we can get 4(0/02)(0/0z) = A.

11. Let f(x +iy) = u(z,y) + iv(x,y). Since f is holomorphic in the open set €2,

_(9f\ _9u_ Ov_
O_<8z)_8u+zaz_0'

Hence 0u/0z = 0 and dv/9z = 0. By Exercise 10,

Ou Ou ou
v Ov v

Therefore the real and imaginary parts of f are harmonic.

12. Note that the real and imaginary parts of f are u(z,y) = \/|z|ly| and v(z,y) = 0.

8x(0’ ) a0 0 Oy y20  y—0 ’
Similarly,
ov ov
—(0,0) =0, —(0,0) =0.
am( ) ) ) 8y( ) )

Therefore f satisfies the Cauchy-Riemann equations at the origin.
However, we cannot apply Theorem 2.4 because Cauchy-Riemann equations can’t be satisfied in any

open set containing origin. In fact, f is not holomorphic at 0 because the derivatives of f diverges near
0.

13. Let f(z 4+ iy) = u(z,y) + iv(z,y). By Cauchy-Riemann equations, du/0x = Ov/dy, Ou/dy =

—0v/0z holds.

(a) Suppose u is constant, then du/0x = Ou/dy = 0. then by Cauchy-Riemann equations, dv/Jdz =
Ov/dy = 0. Therefore v is constant, and f = u + iv is constant.

(b) Similar to argument above, if we suppose v is constant, then dv/dx = dv/dy = 0, hence Ou/dx =
Ou/dy = 0, which means u is constant and f = u + iv is constant.

(c) Since | f]| is constant, u? 4+ v? = | f|? is also constant. Therefore

d(u? +v?) ou v (u? +v?) ou v

=2u— +2v— =0 =2u— +2v— = 0.
Ox u8x+ Yo ’ Oy u8y+ U@y

Use Cauchy-Riemann equations to get

u%—v@—o v%—ﬁ—u@—o
Ox oy Oz dy
and
ou ou
2 29U _ 2 2\ g% _
(W + %) g, = W+ )5 =0



If | f(2)| = 0 for some points in €2, since | f| is constant, f = 0. If not, then u? + v? # 0 for all points
in Q, du/0x = Ou/dy = 0 for all points in {2 by the formula above. Hence u is constant, and v is
constant by (a), also is f = u + iv.

14. N N N N
Z anbn = Z an(Bn - Bn—l) = Z aan - Z aan—l
n=M n=M n=M n=M
N N-1
= Z a, B, — Z Qi1 B,
n=M n=M-1
N-1
=anBy —ayBy_ 1+ Z a, B, — Z Qi1 By,
n=M n=M
N-1
=ayBy —ay By — Z (@41 —a,)B,
n=M
15. Use summation by parts formula to get
N N-1
Z(l - Tn)a’n = (1 - TN)AN - (1 - T)AO - Z((l - ,rn+1) - (1 - T"))An
n=1 n=1

N-1
=(1=rM)Ay—(1-7) Z A,
n=1

Note that Zgzl r"a,, and Zgzl r™ A, converges whenever 0 < r < 1.

Let A = lim,, , A, thenforevery ¢ > 0, there exists M > 0 such thatn > M = |A4,, — A| < €. Also,
(1—r)3>> ™A, = Aholds because

1=r)) rmA,—A )Zr”(An—A)
n=1

n=1

=1-r

<(1=r)) A, - A
n=1

M 00

n=1 n=M+1

M 00
(1—r) (Zr |A, — Al + Z r"a)

n=1 n=M+1

(l—r) 7‘”|An — Al rMHig

3
H

< 2¢

for r close enough to 1. Finally we get

: e — : _ _ n _ _ _
TJH%?;“ ra, = lim A= (1 T);r A, =A—A=0

and

o0 o0
lim E r"anzg Q-
r—1,r<1

n=1 n=1

16. (a) (log(n + 1))%/(logn)? = (1 + logn log("ﬂ))2 — 1 as n — oo, the radius of convergence is 1.
() (n+ 1)!/n!=n+1— ooasn — oo, the radius of convergence is 0.

(n+1) n? 4"+3n (n+1)? 1 i
(c) <4n+1+3n+3>/(4"+3n> T e 1/4 as n — oo, the radius of convergence is 4.




17.

18.

((n+1)D3 /(n))3  ((n+D)\3  (3n)! (n+1)3
() (3n+3)! /(3 ) —( nl ) " (3nt3)! (3n+3)(3n+2)(3n+1)

gence is 27.

— % as n — 0o, the radius of conver-

(a+n)(B+n)
(n+1)(v+n)

o ' 1 (22)" and treat as a function of z2. Then the ratio of two

(e) The ratio of two consecutive terms is — 1 asn — oo, the radius of convergence is 1.

(f) Rewrite the series to ano AT 527

. . —1 . .
consecutive terms is e 0 as n — o0, the radius of convergence is 0.

By definition, for every & > 0, there exists N > 0 such thatn > N = ||a,,,,/a
€ < |ap,1/a,| < L+ e. Multiplying this inequalities from n = N to n = k — 1, we get (L —¢)
lag/ay| < (L +¢)* N, and

— L| <, thatis, L —
k—N <

|

(L — )N ap 5 < Jay|V* < (L + )N/ *|ay ",

1/k

For sufficiently large k, we get L — 2e < |a;|'" < L + 2¢, so the proof is complete.

Suppose f has power series expansion
f(z):i::anz” (lz| < R).
Since radius of convergence of f is R,
n 1
liisgp |an|l/ =7

holds. Now fix z, such that |z,| < R. Then

N 00 ) n n
>, = D anly = 20))" = o> () - )
n=0 n=0 n=0 k=0
N N n N
-y (Zan (7) ) (=) = 3 (V) (2= 2"
k=0 \n=k k=0

where we defined

Observe that

1/n_ 1

lim sup =7

n—oo

()

and |zy| < R, therefore b, (N) converges as N — 00, let’s call that limit b,,.

Now we want to show that

Now we only need to show that



5%

n=0

a, (Z) Zn k(7 — ZO)kD < 0.

(See the end of Chapter 7, which discusses interchanging the order of double sums.)

Since

S (5

n=0 \ k=0

n o . 00 n n .
()% ’“@—@"D sZ(Zan|(k)|zo| ’“|z—zo|’“)
n=0 \ k=0

= k
= lag|(|2] + 1z = z))",
n=0

we can interchange the sum whenever |z — z,| < R — |2,|, hence f has power series expansion around
ZO.

Note. I thought that the radius of convergence of a power series expansion centered at z is exactly R —
|20 |- Therefore, I tried to prove the following, but was unable to do so.

- n n—k
Z an, <k> 20

n=~k

1/k .
lim su =
Pl R— 2]

19. (a) This power series can’t converge because |nz"| = n > 0.
(b) This power series absolutely converges because |2" /n?| = -1 and 3~ 1/n? converges.

(c) If z = 1, this series obviously diverges. If not, use summation by parts formula to get

o g _ - - -
—n NN ~\n+1 n)" N N nn+1)"

N N . .
where Z,, =" 2" = z1=%-_ Since Z,, is bounded whenever |z| = 1, series above converges.

20. Since a,, = 5 f™(0), we get

~m(m+1)(m+2) - (m+n—1)

" n!
:(ner—l)!: 1 .(ner—l)!N 1 e
(m—1)n! (m—1)! n! (m—1)!
21. Just calculate the sum of first £ 4+ 1 terms and take a limit.
k on 2 on+l_1 12"t on+l_1
¥4 _Z+Z + -+ 2z _Z'T_ z 1—=z k—oo z

2:0 1_Z2n+1 - 1_Z2n+1 - 1_Z2n+1 - 172 1_Z2n+1 172:?
n=

KL ogny2m a2l (b )2t 1= (g )t

1—2z
n - k - k
n:01+z2 1—22 1— 22

1 1 k k k k—oo z
_ k(2—22 _9k,2 14 52 +1>
1—21—22

1—z

Since all but the first term are positive, any rearrangement of its terms still converges to the same value.

22. Suppose N can be partitioned into a finite number of subsets that are in arithmetic progression with
distinct steps. Then we can write



23.

24.

00 a;

o] N o N s
D B S e Dy
1—=z2 2.:ll—zi

n=1 i=1 j=0

with NV > 2 and all d; > 1. Now multiply (1 — z)(l — zdl)(l — zd2) (1 — sz) both sides to get
z(l — zdl) (1 — sz)
frd Za‘1<]_ _Z)<1 — Zd2> ee (1 — sz) + e _’_ZQN(]_ _Z)(]. — Zdl) cee (]_ J— ZdN—l).

Let z; = ¢?™/% and consider a limit z — z,. Since all terms multiplied by (1 — zdl) converge to zero,
the one remaining term

2(1—z)(1—2%) - (1 —2%)
should also converge to zero. Hence there exists a integer 4, such that
d; dﬂZﬂ'i
7' =en ™ =1 = d | d; .

In particular, d; > 0 and d; # d; for any i # j, we conclude that d; < d; . Now repeat this process N
times to get

d1 < dil < diz < < diN.

Since all 7;, are different, at least one i, is equal to 1, which is a contradiction.

Observe that there exists a series of polynomials {p,, }20: , such that

(n) 0 if x <0, -0
Jrie) = pn(%)e_?12 if z > 0. (n=0)

When n = 0, it is trivial for py(2) = 1. Now suppose above statement is true for n = k. Since f*)(z) is
differentiable for x # 0, we only have to check for z = 0.

(k) () — fk) .
i LOE IO g 1 (1)

= lim tp(t)e ™ =0
x—07t x—0 z—0t T o p( )6 ’

t—oo

therefore f(¥) is differentiable at z = 0 and f**1)(0) = 0. Moreover,

oot = o (2)4) - (D) (D) e

hence p,,.;(x) = —2?p),(z) + 223p, (x). So we can conclude that a,, = f™(0) =0 for all n > 0.
Finally we conclude that f does not have a converging power series expansion Y a,, " for z near the
origin, because if it does, then f(z) = Y a,z™ = >0+ 2™ = 0, which is contradiction.

By using the definition of integration along curves and making the change of variables u = a + b — ¢,

b
/7f(z)dz:/ fzla+b—1)) (=2 (a+b—1t))dt

a b
= z(u))z (u)du = — z(u))z' (u)du
/bf(<)>() /Gf(())()

= —/f(z)dz.

ol

25. (a) Let 2(t) = Re® (0 <t < 27) then

10



27 27 - n . o
/z”dz = / (Re)"iRe"dt = iR" / entlit gy — iR 2 %f n=-1,
. 0 0 0 if n# —1.

(b) Let2(t) = A+ Re® (0 <t < 27) where |A| > |R|.

27
/z"dz = / (A+ Re™)"iRe™dt
o 0
If n # —1, then this integral can be calculated as
27 1 ot 27
/ (A+ Re™)"iRedt = [7 (A + Re™) } =0.
0 n+1 0

For n = —1, the calculation is as follows;

2m
/ (A+ Re™)"iRedt =
0

O\R‘)
3

e’t iR [ S R\
= ' ——eit | dt
1+ Beit A/O ‘ n_0< A )
/ (_R> 6(n+1)itdt
o A

n 27
<_R> |: 1 .e(n+1)it:|
<\ A (n+1)i 0

NS M:u

4

n

e

Therefore the integral value is always 0.

(c) Observe that
1 1 1 1
dz = dz — dz |.
/(z—a)(z—b) * a—b(/z—az /z—b Z)
¥ v ¥

The second integral is 0 because it was calculated in (b). Now we calculate the first integral.

1 27 19 27 27 oc
dz = d9 =1 d0
z—a 629 1—ae T
o 0

0
= Z/ )" e 040 =i - 21 = 2mi

since the integral is not zero only when n = 0. Finally we get

1 1 omi
/(z—a)(z—b)dza—b(Qm_O)a—b'

~

26. Suppose F',G are primitives of f, hence F/ = G’ = f. Note that () is connected, therefore pathwise
connected. Now take any point w € (2 and define v,, , as the curve from w to 2. Then for any z € (),

(F—G)(z) = / (F—GY/() d¢ + (F — G)(w)

Yw,z

:/ 0dC + (F — G)(w)

Yw, =z

= (F - G)(w).

So F(z),G(z) is differ by a constant.

11



Chapter 2. Cauchy’s Theorem and Its Applications

—22

1. We integrate the function e™*" over the path in following figure. This is possible and the value equals 0

2. .
because e™*" is holomorphic in C.

Re's

By Cauchy’s theorem, We get

B 2 0 02 ; 0 (7tei%)2 i
/ e’ d1:+/ e(—Re') iRewdH—l—/ e e'adt = 0.
0

0 R

The first term converges to fooo e~*"dx = \/7/2. Now we estimate the second term.

T ) )
< / (R it
0

where the last value equals £ o f e R cosz gy by changing the variables = = 26.

™

/ " (=R Rei® 4
0

9 =R / " B2 eost20) g
0

For large R, let 6 = R™%/2 < /2. 1f x € [0, 7/2 — 6] then cos 2 > cos(m/2 — §) = sind. So

R [? i
7/ Coqmdl‘_*/ (’o@rdx_‘_i/ cosxdx
2 0

R T_§
Si/Q blll&dx+5 g 1dx
2 J, 2J;
R/m 2 R
_ 775) —R*siné iy
2 (2 ¢ T3

Since R2sind ~ RY2 and RS ~ R™1/2 as R — oo, this sum converges to 0.

Finally, the third term is equal to

R 1+ R R
/ e"Wedldt = / cos(t?)dt — i / sin(t?)dt |.
0 \/i 0 0

Now we take limit R — oo then we get

\2[+0+</ cos(t?) dt—z/ sin(tZ)dt> =
0 0

and

o0 o0
/ sin(2?)dr = / cos(z?)dr = ——.
0 0 4

2. First observe that

12



dz) =

.. .. 0 gir_] o© iz
* sinx e — e 1 ——dr — e —1
/ d:r,:/ il W B N Jo
0 2ix 21 T

1 o eir ] el ] 1 (e —1
== dx — dr | = = dz.
21(/0 2 /0 z x) 21’/00 2

Now integrate the function (e** — 1) /z over the indented semicircle below.

TR

N

—R —€ € R

Applying Cauchy’s theorem gives

—€ iz _q iz _ q R iz _q iz _ |
/ c dz+/ c dz—l—/ c dz+/ ¢ dz = 0.
p % z . z z

Ve TR

Since (e — 1)/z =i + E(z) where E(z) — 0 as z — 0,

iz_l
/e dz
z

Ve

i e—0
< e - supli + E(z)] — 0.
ZE7,

Integral over vy is

RN ™ eiReis -1 » T i . T _—
dz = 71.9’LR€1 do =1 e —1df = —mi + e de.
z 0 Re 0 0

TR

For large R, let § = R~1/2 < 7/2. Then

‘/ ez’Re“’dQ S/
0 0

§ ) T4 ) T )
— / efRsmt‘)da + / efRsm Odo + / efRsdee
0 § 9

S 29 4 (’/T - 26)67Rsin5

eiReie

do = / e—RsinOdQ
0

which converges to 0 as & — oo. Therefore letting ¢ — 0 and R — oo gives

/ ¢ 5 dxr =i

—00

and

DOsinxd moow
r = —= —=.
0 x 21 2

A

3. Integrate function e~ “** over the curve below.

13



Reiw

0 R

Since e~“7 is holomorphic in C, applying Cauchy’s theorem to get

R w 0 ) 0 )
/ e~ Atdt + / e AR Refdf + / e At et gt = (.
0 0 R

The first term is equal to % (1 — e~“R), which converges to 1/ A. The absolute value of second term is

do

w
i0 . 3
/ e~ AR i Reifqp
0

w
o
S/ ‘e_ARez iRe™
0

< /w RefARcosede < /w RefARcoswda
0 0
— wRefARcosw

which converges to 0 as R — oo. The third term is

0 o S0
/ e~ Attt = v / e Ateosw (cos( At sinw) — i sin( At sinw))dt
R

R
R
= —e“"/ e % (cos(bt) — isin(bt))dt.
0
Therefore when R — oo, we get

o 0o 1 . 1 a b a b
—at _ —at 3 = —e W=—| = —7— = —1
/0 e~ cos(bt)dt /0 e~ sin(bt)dt ¢ A (A ZA) @10 a2+ b?

Hence

o0 a a o0 Y . b
/0 (& tCOS(bt)dt = m, /0\ e tSln(bt)dt = m

—72?

4. We will integrate the function e along the curve below.

—R—i¢ R—i€
TR TR
—R 0 R
Since e~ is holomorphic in C, by Cauchy’s theorem,

R —R
/ e / f(2)dz + / e~m(ei€ g / f(z)dz=0.
—R TR R

T-Rr

14



Integral over the real segment converges to [ > ¢ m*dz = 1. The second and fourth term converges
—0o0

to 0, because the size of integrand becomes smaller proportionally to ¢ ™7 The third term is
-R -R R
/ 6777@71‘5)261:6 — / 67ﬂm2+2ﬂm£+ﬂ£2d.ﬁ — _67752 / efmc2+2m'z§dl,.
R R -R

Let R — oo and get

0
/ e—ﬂa;2+27riwfdx — e—ﬂfQ .
—o0

5. Let f = F +1G. Since f is holomorphic on (2, % = % and %—5 = —% hold by Cauchy-Riemann

equation.

Also, by Green’s theorem,

oG OF
O(—&E—ZM)da:dy—/Todedy—O,

oF 0G
0<axay>dxdy /To()dxdy().

Hence

/f(z)dz=/(F+iG)(dx+idy):/Fdx—Gdy—Fi/de—i—de:O.
T T T T

6. Consider the keyhole Fé,a, where ¢ is the width of the corridor, and ¢ is the radius of small circle centered
at w.

By Cauchy’s theorem,

Since f is continuous, letting § — 0 gives

/T F(2)dz = / F(2)dz.

because the integrals over the two sides of the corrider cancel out. However, f(z) is bounded near w,

/ f(2)dz

therefore

<2me- sup |f(z)] =0

|z—w|<e

as € — 0. Hence we get

/Tf(z)dz =0.

15



7. Since f : D — C is holomorphic,

by L f(©)
f(O)—Tm- \q:rCTdC

holds for 0 < r < 1. Also, changing the variables ¢ = —¢, then we get
1 (=0

"0)=— ——=2d(.
Therefore
sy | L f(Q) — f(=0) 1 |f(Q) — f(=0)
201 0] = |3 /< e /|< e
1 d 1 d d
== cer IS e

Since 0 < r < 1 is arbitrary,

2 (0) < inf L.

T o<r<lr

8. We fix integer n and R < 1. First consider the case > 0. For z > 0, by Cauchy inequalities,

| |
|f(”>(x) < n—n sup |f(2)] :%A(l—&-x—i—R)".
R z€Cr(x) R
Since
n! (1+z+R)" nl R \" n!
— A= — A1+ —-] - —A
R" (I+x)m Rn ( + 1+:L'> Rn
asn — oo, %A% is bounded, therefore there exists constant AZ such that

|F" ()] < Af(1+ )
for all z > 0. Similarly, for x < 0,

n! n

|
()] < — sup |f(2)] = =—A(+2z—R)",
@I s )= Al )
and
nl 1+z—R)" nl R \" n!
Ry A i) N Sy}
R (1) R”( m—l) ~ Re

as n — 00, there exists constant A, such that
|F" ()] < A (1 —a)

for all < 0. Letting A,, = max{A4;,, A} completes the proof.

In the case of < 0, we divide R into (—oo, —R) U [—R, R] U (R, o). The case (—oo, —R), (R, 00) is
similar to argument above, we can get A, and A;". When z € [—R, R],

n!

@) < 7oA.

Since the function

16



n! 1
Ay P
R (1 + [z])7

is bounded in compact set [—R, R], defining by

n! 1
A= sup —A——
vel-r,r) " (1 + |z[)7

gives
£ ()] < AL (L [a])".

Now letting A,, = max{A;,, A%, A} completes the proof.

9. We can assume 2z, = 0. If not, consider the function f : Q — z; — Q — 2, which is defined by
f(2) = p(z + 2y) — 2.

Since 2 — z; is also bounded open subset of C, and f(0) = ¢(z;) — 2, = 0and f/(0) = ¢’(2,) = 1, we
can prove by assuming a special case where z; = 0.

Let p(2) = z + a,,2" + O(2"™!) and define ¢;, = p o - 0 ¢ (k times). Then we get
0p(2) = 2+ ka,z" + O(z")
by induction, because k£ = 1 case is clearly true, and equation at k¥ = [ leads to

i1 (2) = @i(p(2) = ¢(2) + la,p(2)" + O(p(2)"")
=2+ a,z" +0(z"") +la,z" + O(z") + O(z"1)
=z+ (I+1)a,2" + O(z"1),

which is equation for £ = [ 4 1. Use Cauchy inequalities to get

n n!
i (2)] = knla,, < 217l

for appropriate R. Since 2 is bounded set, | f| o is bounded, therefore & — oo leads to a contradiction.

10. No. Consider the continuous function f(z) = Re(z). If series of polynomials { P, } uniformly converges
to f, then

/6D P, (z)dz — /3]]) f(z)dz

as n — 0o. Note that fam P,(z)dz = 0 for all n € N. However,

2 2m
f(z)dz = / Re(e®)ie®df = i / (cos? @ + i cos fsin 0)d6
0 0

27
1 20 1 1
:i/ (JFCOS+i25m29>d9=¢-2-2w=m#0
0

oD

2

which is contradiction.

11. (a) Note that

_ 1 f(©) _ 1 f(©)

17



Also, by calculation,

f(©) f(©) 1 O ¢ ¢
(c—z_c—m/z)dg_%i/c ¢ (c—z_c—m/z)dc
1 10 C+z 1T ; Re™ + 2
_MACRG(CZ>d<_M/O f(Re“”)Re(Rein)d(p
(b) Re" +r 1{Re+r Re ™ +r
R(R) = z(zaewﬁRewT)

1 2R% — 212 _ R? —r?
2\ R2+ 72— Rr(cos™ +e~®) )  R2—2Rrcosy+72

12. (a) Let
Ou  Ou .Ou

=2— = .
9(2) dz Oz Zay

Then g is holomorphic in ID since it satisfies Cauchy-Riemann equations in D), indeed,

0 (0Ou 0 ou

m(m)m(‘ay) Au=0
0 (Ou B 0 ou . 5
ay(ax)—‘ax(‘ay> e

Hence there exists holomorphic function F such that F* = gby Theorem 2.1. Let Re(F) = U. Then

U _ U _0u

9: T 9s or C UTute

where ¢ € R is constant. Now define f = F' — ¢ then
Re(f)=Re(F—¢)=U—c=u.
Also If f and g is a holomorphic function that satisfies the condition of problem, then
Re(f —g) = Re(f) —Re(g) =u—u=0,

which is constant, therefore Im(f — g) is also constant by Exercise 13(a), Chapter 1.

(b) By (a), there exists holomorphic function f such that Re(f) = u.Put R = 1, z = €'Y in formula from
Exercise 11(a) to get

2m ei rei@
u(s) =Rel(f(z) = 5 [ Re(f(e'*)) Re (*) dy
0

e — ret?
1 [ ) ete=0 4
= — 1P _
o ). u(e'?) Re(ei(sae) — de
1 2

== | B(0—pu(e?)dp.
0

13. Note that ¢;, = 0 means f*)(0) = 0 in the power series expansion below.

18



14.

f(Z) = ZC"<Z - ZO)n
n=0

Now define sequence of sets {Ak}:i , as follows
Ay={zeC: fW(z)=0}.
Since for each z; € C, at least one coefficient is equal to 0, therefore there exists £ € N such that
z, € Ay

Hence

e
k=1

If every A;, are countable, then C is countably infinite, which is contradiction. Therefore at least one A,
is uncountable. Then there is a limit point of 4, in C. By Theorem 4.8, f*)(2) = 0. Accordingly, f is
polynomial of degree up to k£ — 1.

Suppose f has a pole of order £ at z,. By Theorem 1.3, Chapter 3,

f(z) = <( o ot = >+G(Z),

z—2zp) =%

where G(z) is a holomorphic function in a neighborhood of z,. Since f is holomorphic in an open set
containing the closed unit disc,

f(z) = <(b"“k + ot b‘1> => c,2" (2] <1+9).
n=0

z—2y) Z= %

for small enough §. Note that > ¢,, 2™ converges for |z| = 1, therefore ¢,, — 0 as n — 0. By definition,

Zanzn = ;k_i_._i_ -1 +chzn_
n=0 2= 2 n=0

(z— Zo)k
Note that
1 S l l +n— 1 —n—l . n
WZZ(—U 1—1 P % (|2l < 1).
0 n=0
Therefore
=) k oo 00
> =3 ()t Y
n=0 =1 n=0 n=0

Hence
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k l+n—1\ _p—
. a et (_1)l< -1 )ZO :
lim —2 = lim

n—oo @ n—00 k 1+ —n—i—1
ntl Coir + 38 (—1) (H 2
1 n k 11 l+n—1\ _j
y Cp* pieT20 T Zl:1 (—1) nk—l( -1 J*0
= 1l1m
n—o00 L1 n +Zk (_1>l 1 +n\ _—1—1
Cnt1 " pF-1%0 =1 2T\ -1 ] %0

R Ry A
=25"/% = Z0-

15. This proof is made up of several steps.

Step 1. Define g as

(5 o <1
9<Z>‘{1/f<1/z> o> 1

This is well-defined because f(z) # 0 for z € I, and obviously g is continuous in C.

Step 2. g is bounded in C. Since g is continuous on compact set D, there exists positive number 1, M
such that m < |g(z)| < M for z € D. therefore 1/M < |g(z)| < 1/m for |z| > 1.

Step 3. g is holomorphic in |z| > 1, since g satisfies Cauchy-Riemann equations in open region {z : |z| >
1}. Let g(x + iy) = u(z.y) + iv(z, y) for x + iy € D. Note that

ou Ov Ou ov

da 9B 9 da
holds in D because g is holomorphic in D.
Forz +iy € {z: |z| > 1},

u(a, B) Y v(a, f)
(a,8) +v(e, B)?  ule, B)? +v(a, B)*

where a(2,y) = 21, B(%,y) = ;ziz- Now compute the partial derivatives;

. 2 2 B _ 2,2
9 (%) Y U el A ST R VLY (.= R S | PO ekl
Oz\uf+v2) O\ (22 +y?) (@2 +92) 9\ (22 +42) (22 +y?)

0 v v [ z%—y? —2zy ov —2zy 22—
a*(ﬁ)zaf (W V) — 2w oo | s (uf =) 2w —
yAus v B\ (22 +12) (22 4 y2) a\ (22 +y?) (22 + y2)

Therefore

gl +iy) =1/g(1/x +iy) = -

Also,
2 2 o o 2 2
9 (711 ) _ouf 2y 5 (v —u?) — 21“}7233,7; 5 | + Ou _—2ry 5 (v —u?) + ouv— Y >
y\u?+v2) 0\ (22 +9?) (22 +y2) dar \ (a2 +y?) (22 +y?)
2 2 - - 2 2
9 (71} ) N O et 5 (u? —v?) — quikcy 5 | + L 5 (u? —v?) + 2w~ L 5
Or\u? +v2)  da\ (22 +4?) (@2 +92) 9B\ (22 +42) (22 + y?)
Therefore
0 ( U ) 0 ( v )
oy\u2+v2)  Odx\u2+2)
Hence g satisfies Cauchy-Riemann equations in {z : |z| > 1}.
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Step 4. T is any triangle that belongs to D, then

/Tg(z)dz =0.

If T' C D, then result is trivial by Theorem 1.1. Now suppose one vertex of a triangle touches the
boundary of a circle. We split a triangle into multiple triangles. Let 7™ be the triangle that touches the
boundary of the circle.

T*

T T,

Integral over other triangles is simply 0, therefore

Since g is bounded in compact set I, sending perimeter of T* to 0 gives

/T g(2)dz = 0.

If more than two vertexes of a triangle touch the boundary of circle, we can show that integral over the
triangle is 0, by splitting to triangles which have only one intersection with circle.

Furthermore, we can see that integral over the triangle T € {z : |z| > 1} is also zero.

Step 5. g is holomorphic in C. We prove this by showing that fT g(z)dz = 0 for all triangles T' € C. The
first step is to convert an arbitrary triangle into an isosceles triangle of a certain shape by splitting it.

Suppose there are two intersection with D). The goal is a triangle with tangents at those intersections
as sides. This is easily attained by drawing tangents at each intersection.

You can then draw a tangent line from the point where the circle meets the perpendicular bisector of the
straight line connecting the intersection, so split the triangle into smaller triangles with same shape.
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Repeat this n times, then there are 2™ triangles of this shape. Let m = 2", and let’s call each triangle 7,
(1 < k < m). Now we estimate integrals fﬂ{ g(z)dz.
k

21

22

Let h is a vector that represents height of ;.. Note that |h| = sin?(6/2m) sec(§/2m) = O(1/m?). Since
f is continuous on compact set D,, f is uniformly continuous on D,. For every € > 0, there exists § >
0 such that |z — 25| < d = |f(21) — f(25)| < €. Then

/ g(z)dz

Tk

1

g(z + tw)wdt

1/2 1
( g(z +t(w+2h))wdt+/ g(z; +tw+2(1 t)h)wdt) ’
1/2

1/2
/ g(z1 + tw) — g(z1 + tw + 2h)||w|dt
0
—I—/ lg(z + tw) — g(2; + tw + 2(1 — t)h)||w|dt
1/2

< Lule + Ljwle = sin( 2
— E — E=8Ss1m| — |€&€.
= Qe GiwiE =sml o

Therefore

for small € and large m. Hence fT g(z)dz = 0.

Step 6. Since ¢ is bounded and holomorphic in C, g is constant. f(z) = g(z) for z € D, so f is also
constant.

Chapter 3. Meromorphic Functions and the Logarithm

1. The zeros of sin 7z are
sinrz =0=e™ =™ = 2™ =1=z=n (n€Z).
and these are each of order 1 because

sinmz —sinmn

im —  =mwcos7wz|,_, = (—1)"7w # 0.
lip S fom = (L) £
Therefore the residue of satz =nis
1 (="
Res — = lim(z —n)— - = .
z=n Sinmwz  z—n sinmz — sinmn T
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2. Integrate the function 1/(1 + 2*) over the semicircle with radius R.

TR

—R R

Note that there are two simple poles of 1/(1 + z*) inside the semicircle, z = %, % By residue

| 1 1 1
/ —dx + / ——dz =2mi| Res + Res .
R1+x4 1+ 24 aetti 1424 i 1 4 24
- TR V2

V2

formula,

The integral over the arc is less than 27 R - ﬁ, hence converges to 0. Now calculate residues.

1 1
ZE$1+Z4 B (m_—wz‘)(m_ﬁ) (ﬁ_ —1—i)
v2 vz vz )\vaT v2)\v2 T 2

B 1 B 1
V2V2i V20 +0) 2V2i(1414)
1
zgi 1424 <71+i _ ﬂ) <71+i - b) (71“‘ B 7171')
V2 vz - v2)\vz T 2 )\v2 V2
1 1

T VBV V(-1 +0) 2R —d)

Let R — oo to get

* 1 1 1 1 1 T (1+i4+1—1 us
iz =omi -f,( -+ ) :7(7,> -
o 1+t 2v/2 i\l1+4+i 1—1 V2 1—42 V2

3. Integrate the function %% /(22 4 a?) over the semicircle of radius R.

TR

at

—ai

By residue formula, we get

R i iz iz
e e . e
ﬁdi]ﬂ' + ﬁdz = 2’/T'L ReS ﬁ
pIT°+a e ? +a z=ai 2° + @
- R

Note that if Im(z) > 0 then |¢**| = e~™(2) < 0. Therefore the integral over the arc is less than 27 R -
ﬁ, which converges to 0. Also,
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iz i-ai —a

e e e
Res 5 3 = = - = —
z=ai 2° + a ai + a1 2a1

Hence let R — oo to get

00 eia: ' e~ @ e @
ﬁ - 27Tl e =TT
X ta 2a1 a

and

°  cosx o et e @
5 5 = Re 5 | =7 .
o Tt ta o ot a a

4. Integrate the function ze'* /(2% + a?) over the semicircle of radius R.

Tr

ai

—ar

There is are only one simple pole z = ai in the semicircle, hence by residue formula,

R iz iz iz
xe ze ze
= —zdr+ — T 3dz=2mi Res 5——.
+a ~ 22 4+ a? z=ai 2% 4+ a
R

We now estimate the integral over the arc.

27 i JiRe'?
R )
‘/ Ty de = ‘/ R2623 zRe’edG
z a et

ReiGBiRew

. 6
——————iRe*
R2 6210 + a2

do

27
</
0

27 —Rsin6 2 27
— R? / c_ 4o < —L / e~ Rsind g
0 0

|R2¢219 4 q2| " — R? — a2
For large R, let § = R~'/2 < 7/2. Note that § € [§, 7 — 6] then sin 6 > sin d.
2m ) § ) T8 ) ™ )
/ efRsdea _ / efRsmGda + / 67R51n(9d0 + / efRsm 9(19
0 0 4 T—08
<0 14 (m—26)e sind 5.1
2 +( 2>R51n1 R—)ooo
= — T——=|e —
VR VR

Therefore let R — oo to get

e} T iz . —a

€Tre ze .oale .

ﬁdx*%mResﬁ:Zﬂ% — = qme ®
X ta z=ai 2° + a 2ai

and

* xsinx * ge'® a
Lo TTta Lo T ta
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5. When £ = 0, then changing the variables x = tan 6 to get

S 1 /2 29 /2 /2 1 20
/ ﬁdx:/ %dﬁz/ cos29d9:/ id@zz.
—o0 (1 + .’1,‘2) —7/2 sect 0 —7/2 —7/2 2 2
Suppose £ > 0. Observe that Im(z) < 0 then ‘6’2“”5| = 2™ m(z) < 1. We integrate the function
=272 /(1 + 22)? over the lower semicircle of radius R.

i
—R B TR
—i
i
TR R R
—i
contour when & > 0 contour when £ < 0

Since there are pole of order 2 inside the curve, by residue formula,

-R €—2Triw£ e—27riz£ e—27riz§
/ ————dr + / ————dz=2mi Res ————.
N A S =5 (1 22)

We can easily see that integral over the arc tends to 0 as R — oco. Therefore

[es} —2mix€ —2miz€ d —27iz€
/ 672dx = —2mi Res 672 = 27 lim — 67_
Z=—1 Z——1 z zZ—1
oo (14 22) (1 + 22) idz \ (2 —1)?
L —2mife I (5 — )2 — o2 L2 (5 — )
= 27 Zlirgi G—i)t
(—4m€ —2)e 2" ¢

= —(1+2m&)e "¢,
8i 5L+ 2m8)e

= —2mi -

Proof for case £ < 0 is similar to proof for case £ > 0. Integrate the function e27%¢ /(1 + 22)2 over the

upper semicircle of radius R, and let R — oo to get

[es} 6—2m’z§ e—27riz£ d 6—2m’zf
/ ——dz=2miRes ———— =2 lim — | ———
i 2

oo (

1+ 22) z=i (1 + 22) —idz \ (z+1)2
A€ — 2)e2mE
= 2wy A ZDET _ 21— gmg)et = Z(1 -+ 2l
—oO1

L = over the upper semicircle.

6. Integrate the function T

Tr

By residue formula,
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R
1 1
———dx +/ —————dz=2miRes ——.
/_R (1+x2>n+1 . (1+22>n+1 i (1+22)n+1

Obviously the integral over the arc goes to 0. Since z = i is pole of order n + 1,

/ 7Hd3; =2miRes ————— = 2w lim — () (Z + ’L')inil
o (14 22)" = dz

z=i (14 22)"*! z—i n)

= 2m¢ lim l'(—n — 1)(-77/ — 2)(—7’L _ n)<z + Z’)—n—n—l

z—1 n!

o (2n)! 11 (2n)!

(n!)2 "92ntl T T (an!)Q -

C1-2--(2n)  1-3-5---(2n—1)
T a2 T 246 (2n)

7. We integrate the function 1/(a + cos z)? over the rectangle below.

.a2
2
.al
Note that
1 1 4e2iz 4eiz
(a+ cos z)? (a + eiz_;—z‘z>2 (27 + 2aei* + 1)% (e — ry)%(ei® — ry)?
where
rn=—a—vVa2—1, ro = —a+Va?—1.
Now let

a, =m—In(—r;)i fori=1,2,

then 1/(a + cos z)? have pole of order 2 at z = a, . By residue formula,

27 1 R 1
o (a+cosm) 0 (a—f—em +emars )

0 0
1 1
[ ettt | it = 2w Res
9, @+ cos(t +iR) R (a I et<‘,»2@—t>2 z=c, (@ + €08 2)?

The integral over the top side of rectangles goes to 0 as R — oo. The integrals over the vertical sides
cancel out. The residue is

1 . d 9 4e2% 1 a
Res ————— = lim —| (z —ay)” - — > s | == ——=3
Z=0uy (CL + cos z) z—ag dz (ezz _ Tl) (ezz _ 7"2>

hence
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/2” o 27
o (a+cosf)? (a271)3/2'

8. We integrate the function 1/(a + b cos z) over the rectangle below.

00{2

2

.al

Observe that

1 . 2eiz
a+bcosz  b(e® —r)(et* —1y)

where

Similar to Exercise 7, the integral over the top side tends to 0 as R — 0, and integrals over vertical sides

cancel out. Therefore the integral over the real segment equals to

Qeiz
27 Res ——— = lim (z — « _ '
s at beosz zaaz( Z)b(ezz — 1) (e —ry)
T . S S
zoay b€ —1y) e —ry  b(ry—1y) iy
2 1

Cib(ry =) iVaZ — b2

Hence

/2” o 2r
0 a+bcosh a2 _—p2

9. Observe that

sinz = (1 — e2m%)e T (12>

2
Since
—g < arg(l —e*™*) < g,—ﬂ' <arg(e ™) < O,arg(%) = g’
we get
. omi , 1.
log(sinz) = log(1 — e*™*) — iz + log 3t
Therefore
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1 1 1 1
. 1

/ log(sin mz)dz = / log(1 — e?™®)dx — / mizdx + / log<7i> dz
0 0 0 0 2

1
_ / log(1 — €27 )dx — i~ —log 2 + i~
; 2 2

1
:/ log(1 — e?™®)dx — log 2.
0

Now we integrate the function f(z) = log(1 — e®™#) over the contour below.

Y6
R
Y1 Vs
V2 V4
IS \ Vs
€ 1

By Cauchy’s theorem,

RS

Integrals over the vertical sides cancel out, and f7 f(2)dz — 0as R — oo. Now we estimate the integral
6

|t

Y2

?.

over 7s.

/2 )
/ log<1 — 62”6616)1'561'6(19
0
& 1 27ri£ei9
DS nr

— 8 l —27rne sin Qde
1™ Jo

n=

/2 )

<c [ log(1 - e as
0

/077/2 i %6—2717%: sin€d9

n=1

IN

Letn, = | &L |+ 1LForn>n_,d=n"13"23 <7/2 0
/2 1) /2
/ e—27ma sin@dg — / e—27ma sin Qde + / e—27rna sinéde
0 0 4

< 4§+ (5 — 5) —27nesing <5+ (g _ 5)674%6

<nB3e723 4 56’4"2/351/3.
Hence
- 1 i 727rn sin 6 —9/3 T gn2/321/3
EZE/ € d9<5z——|— Z <n1/3 /+§6 € )
™ 1/3 ™ > 1 _4n2/321/3
< gelin(n, — 1) +1) +&'/3¢(4/3) + 55; —e e
Note that
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Thus

n=1

S° Lpmamrats ¢ §° pemne <@ f/g) C(4/3) = *3/24(4/:’»
n=1

Asa consequence,

77 1/3 L S RPRETRTE
Sen(n, — 1) +1) +'/5¢(4/3) + 552 et

<7 (1 +1n( f ) _mng) +e!/3((4/3) + 1521 C(4/3) =

Therefore fﬂ{ f(2)dz — 0 as e — 0. Similarly, fv f(z)dz — 0. So we get
2 4

0Er).

1
/ log(1 — €2™®)dx =0
0

and

1
/ log(sin mx)dz = —log 2.
0

10.

We integrate the function f(z) = Zlfsz over the contour below.

) TR
ai
4nY
—R —& € R

By residue formula,

—€

R
- f(x)dx—i—/% f(z)dz—i—/s f(:c)dm+/ f(z)dz = 2mi Res f(z).

z=at
TR

We denote

I= /sR f(z)dx.

Then

-1 ¢ log(— R '
/ 20ga:26mj :/ og( t)(—dt) :/ ogt + i
_p T “+a R

™
———dt=1 o —.
R t2 + a? t2 + a2 tm 2a

The integral over the v goes to 0 as R — oo because

/fdz

Also, integral over the v, goes to 0 as € — 0 because

Al
<orp. ALl
—Qa
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1 ™ log(ee'? , 1 0
/ Owch:_/54>mww:_/%“+z eci?df
Pt | 2230 4 o ; c2e2i0 4 g2'°

€

. | ™ eie ) ™ 961‘0
= —1| gloge ; md9+16 ; md& — 0

Therefore taking the limits R — co,e — 0 gives

2 lo loga + Zi I 2

og 2 .~ log 5 oga w2,
9T + I = 2mi Res —2°_ — 2 - _ .
+ 2a ! mZ %Sz 22 4+ a2 m 2ai T a + 2aZ

Hence

/°° log = d ™
—=—dx = —loga.
0 72+ a? 2a &

11. First, we can assume a > 0. Otherwise, if a = a’e¢? (a’ > 0, ¢ € (0,27)), we can make it equal to the
case a > 0 by doing the following;

27 2+ o
[y S
0 o )
Now define
27 )
fla) = / log|1 — ae®|df,
0

then

27
a) = / log /(1 — acos)? + (asinf)2df
0

2 s
:/ %log(l—QaCOSG—i—a?)d(‘):/ log(1 — 2acosd + a?)dé.
0 0

we are going to calculate the derivative of f in respect to a.

T T —2cosf+ 2a
()= | =log(1—2 0+a®)df= | ——————df
@) /0 Oa og( acost +a’) /0 1—2acosl + a?

_o /”/2 a— cosf / a+ cost __atcosfd
o o 1—2acos€+a2 o 1+2acosf+a?
_4/“/2 a+ a® —2acos? 6

o (1+a2)?—4a2cos?6

2at —1 /2 1 /2 1
_2a )/ . w+4/ —do
a o (1+a2)” —4a2cos20 0 2a

By changing the variables t = tan 0,

sec? f
(14 a2)?tan26 + (1 —a2)?

-
A“ 1

7\'/2 1
5df
/0 (14 a?)® — 4a2 c0526‘

gt — 1+a®> 7
1+a2)’ +(17a2)2 (1+4a2)?® 1—a? 2

Hence f’(a) = 0forall 0 < a < 1. Since f(0) =0, f(a) = 0forall 0 < a < 1. In the case of a = 1,
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12.

/ log(2 — 2cos 0)df = / log (4 sin? ) do =2 / log (2 sin ) do
0 0 2 0 2

2

0
mlog 2 + log sin d@)

4<7r10g2 /2

logsint dt)

which is 0 by Exercise 9.

We integrate the function f(2) = mcot m2/(u + 2)? over the circle of radius N + 1/2, centered at 0.
Observe that z = n (—N < n < N) are simple poles, and z = —u is pole of order 2. By residue formula,

/2“ 7rcot<7rRNe )
0

iRy edf = 2mi Res + Res f(z) |.
(’LL—FRNB“?) ( Z z= nf ) z:—uf( )>

First, the integral over the circle goes to 0 as Ry — oc. This is because cot(7Rye™) is bounded for
large N. Note that

CcoS 2 €% 4 g% e¥Y+e Y
|cot z| = |—= = |— —| <
sin z et — iz lev — e Y]
where z = z + iy. If Im(2) > 1, then
e¥+e™Y
cotz| < ——m =1+ —— .
| ‘_ey—e*y e —1— e2 —1

Similarly,

cot z| isbounded for Im(z) < —1.Now consider |Im(z)| < 1.Since |z| = w R, we can choose
N large enough so

Im(z)| <1 = 7N+ 7/4 <Re(z) < 7N +7/2.

This leads to

1 1
[sin(z)| = §|COS x(e¥ —eY) 4+ isinxz(e¥ +eY)| > §\sinm||ey +e Y| >

-

and
cos(e)] = (e +e) < HE
cos(z)| = z(e¥ + e
2 - 2 7
s0
-1
|cot 2] < cre .
V2
Hence cot(mRe™) is bounded for all § € [0, 2]. Moreover,
. H m i p2min . Z—n _ 1
553 1(z) = lﬂ (u+mn)? e +1) e2miz — e2min — (y 4 n)2’
Res f(z) = lim (mwcotmz) = —x? csc? mu.
Z=—Uu Z——Uu

Therefore taking the limit N — oo gives
o0 1 2

Z (u+n)?  (sinmu)?

n=—oo
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13.

14.

Let g(z) = (2 — 2y) f(2). Observe that
l9(2)] = |z = 2o|| f(2)] < |2 — 2"

converges to 0 when z — z,, therefore g is bounded on punctured disc D, (z,) — {#,}. By Riemann’s
theorem on removable singularities, 2, is a removable singularity of g. Hence g can be extended to
holomorphic function on D, (%), which is

9(2) = ag + a4y (2 — 29) + as(z — 2)” + -+
However, g(z) — 0 as z — z,, we get a; = 0. So
f(2) = ay +ay(z— 7)) + -

near the z,. Then f is also bounded near z, therefore 2, is removable singularity of f.

We are going to determine the type of singularity of function f(1/z) at z = 0.

First suppose that f(1/z) has removable singularity at z = 0. Then | f(1/z)| is bounded in |z| < d, so
|f(2)] is bounded in |z| > 1/4. Since f is holomorphic and bounded in C, f is constant this is contra-
diction with the fact that f in injective.

Next, we suppose f(1/z) has essential singularity. By Casorati-Weierstrass Theorem, image of D, (0) —
{0} by z + f(1/z) is dense in C. Now fix ¢ < 1/r and consider f(0) € C. Since f is open mapping,
there exists 6 > 0 such that

D;(f(0)) € f(D.(0)).
Also, there exists |zy| < r such that
1 . 1
‘f() — f(O)‘ <4, that is, f() € Ds(f(0)).
20 0
Hence there exists z; € D_(0) such that f(z;) = f(1/z,), which is contradiction.

Therefore f(1/z) has pole at z = 0, and we can write

1 O | O k1 a_q
— = — een _ G s
f(z) ko Sk 2L G

where G(z) is bounded near 0. Hence
f(2) = a2 + a2 o dasy 2+ Hoz),

where H(z) = G(1/z) is bounded as |z| — oo. Since H is holomorphic and bounded in C, it’s constant.
Hence f is a polynomial of degree k.

k must be less than 2 to be injective; Otherwise, according to the fundamental theorem of algebra,
it would have more than one zero and would not be a injective function. Even if f has one zero of
multiplicity k, so f(z) = (z — zo)k, it cannot be injective because

f(zo + e2m’/k> _ f(Zo _,’_e4m'/k).

Therefore f(z) = az + b (a # 0).

15. (a) By Cauchy inequalities, for eachn > k + 1,

| k
0] < o sup 7)) <t - LT

RTL ‘Z‘:R RTL O
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(b)

(©

(d)

16. (a)

(b)

as R — oo. Therefore (™) (0) = 0 for all n > k + 1, and f is polynomial of degree < k.

Let 0 < a < ¢ — @ and m be a minimal natural number such that ma > 27. Also, define M =
sup,cplf(2)]. Now define

9(2) = f(2)f(2€') f(2€%2%) - f(ze™e).

Since f is converges uniformly to zero in the sector < arg z < ¢, for all € > 0, there exists § > 0
such that

r>6 = |f(re')| <e (Vte (6,9).
We prove that g uniformly converges to zero as r — 1. For any z = re®, there exists k such that 6 <
t+ ka < ¢, so | f(re'e’)| < e. Therefore

lg(2)] < M™| f(ze™ )| < M™e.

Hence g uniformly converges to zero as  — 1. By maximum modulus principle,

sup|g(z)| < sup|g(z)| = 0 as r — 1,
zeD,. zeC,.

which means g(z) = 0.

Now we show that there is sequence {z,, } such that f(z,,) = 0 and z,, — 0. Since

o)Al o) =

f(Le**n) =0 for at least one k,,. Let z, = Ze’*». Observe that |z,| = 1/n — 0. By Theorem
4.8, Chapter 2, f(z) =

Define f(z) = (z —wy) -+ (2 — w,,). We have to show that |f(z)| > 1 for at least one z € 9D. By
Cauchy inequalities,

nl=f™(0)] < Suplf 2)|-

zE@D

Therefore sup,p|f(2)| > 1. Since 9D is compact, f(z) attains its maximum in unit circle, therefore
max,.op|f(2)| > 1. This completes the proof.

Also, by intermediate value theorem on g(z) = f(e'?), there exists z such that | f(z)| is exactly equal
to 1.

Observe that |ef| = (). Therefore if Re(f) is bounded, then e/ is also bounded. Since e/ is
bounded and holomorphic in C, it is constant. Thus f is also constant.

Note that f has unique solution z = 0 in D. Now we want to take small enough ¢ > 0 such that

|f(2)] > elg(2)]

for all |z| = 1. This is possible if we choose ¢ such that

inf,_1[f(2)]
<=
supy;_1/g(2)|

Note that sup,,_,|g(z)| exists because g(z) is bounded on compact set D. Also, since {2 : |z| = 1} is
compact, we can say that infy, ;| f(z)| = min|,_,[f(2)| > 0. By Rouché’s theorem, f(z) + eg(z) =
0 also has unique solution in D.

Fix small enough ¢, > 0. We want to prove that for every £ > 0, there exists § > 0 such that

foralle >0, [e—¢y| < =

Ze T Zg
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Note that
fe(2) = f(2) +eg(2) = f(2) + £09(2) + (€ — £0)9(2).
Since ‘zso‘ < 1, for every small enough £ > 0, there is only one zero of f(z) + ¢g(2) in D, (zso>.
Now take d > 0 such that
e —eol <8 = |f(2) +e09(2)| > |e —gollg(2)] for z € Ce(z,).

This is possible similar to argument in (a). By Rouché’s theorem, f(z) + £g(z) = 0 has unique zero

in D (zg()), and that is equal to z,. Hence <é&.

Re = Zg,

17. (a) Since |f(z)| =1 and |wy| < 1 in unit circle, by Rouché’s theorem, f(z) = w, has a root in D
whenever f(z) = 0 has a root in ID. Hence it suffices to show that f(z) = 0 has a root.

Suppose f(z) = 0 has no root, so | f(z)| > 0 for all z € D. By maximum modulus principle,

|f(2)] < supl|f(2)] < sup |f(2)] =1,
zeD 2eD-D

‘ 1 1 1 ‘ B
f(2) f(2) f(2)

Hence |f(z)| = 1 for all z € D. By Exercise 13, Chapter 1, f(z) is also constant, which is contra-
diction.

< sup
zeD

< sup
zeD—D

(b) Suppose there is no z € D such that f(z) = 0. By maximum modulus principle,

1
‘f(Z) f(2) f(z)

So |f(2)| > 1forall z € D. But |f(2,)| < 1, which is contradiction.

<1

< sup
z€D

sup
2€D-D

18. Pick any two points z_ € C.(z), zz € Cr(z) on the circle and consider the two curves. First one is the

circle centered at z of radius R, that is, v, (t) = Re*™ (0 <t < 1). Second, 7, (¢) : [0,1] = Dg(2) is
equal to line segment Zz, for 0 < t < 1/3, the circle C.(z) for 1/3 < ¢ < 2/3, the line segment Z_z
for2/3 <t <1.

Y =Cr

2R

Since v, and v, is homotopic, we get

The integral over the line segment canceled so

[ He ]
" 1}

€

Observe that (f(¢) — f(2))/(¢ — z) is bounded near z, hence
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fQ . [ FO—f(2) o[ 2) - 2mi
/CCZdC_/c s d<+f()ésczd<ao+f(> 2

as ¢ — 0. Therefore

19. (a) Let f be holomorphic near z, with u = Re(f). Since f is an open mapping, f(D,(z,)) is open for
small enough r > 0. So there exists z; € D,.(z,) such that Re(f(z;)) > Re(f(2,)), so u cannot have

local maximum at z.

(b) w is continuous function, so |u(z)| have maximum at Q. But u cannot have maximum in € by (a).

Hence given inequality holds.

20. (a) By mean-value property,

Therefore

t roop2mw
2f(z) = | 2nf(z)rdr = f(z +re®)rdodr = f(z +iy)dxd
7t? f(2) /0 wf(z)rdr /0 / (z + re?)rdodr / (z +iy)dxdy

0 Dy(2)

whenever f is holomorphic in a disc D, (z). Note that for every z € D,(2,), D,_,(z) € D,(z,). Now

we sett = r — s, then
1
< — |f(2)]2dzdy 1dxdy
T Dy(2) Dy(2)

1 /D  fadsdy

\ft\// z)]2dxdy < N \// - z)|2dzdy

= ﬁ”fHL%DT(zO))-

1f(2)] =

Hence

1l (p, gy = sup [f(2)] <

1
zeD (zq) \/’TT(T - S)

(b) Let d be a distance between K and U°®. Since both K and U°® are close sets, d > 0. Now

12

1l Loy = =77y 1l 2w

- VAEd2) (d/ 2)
holds for all holomorphic f. Therefore

2
= fd/2 ”ff f"”HLQ(U) <ﬁg

for large n,m. Hence {f,} converges to a function f. Note that {f,,} uniformly converges to

”fn - fm”Loc(K)

f because of inequality above. Since each f,, are holomorphic, and f,, = f, f is a holomorphic
function.

21. (a) Suppose Y,(t),7;(t) are two curves lying in 2, then we can define v,(t) by
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V5 () = (1= 8)7(t) + 57 (1).

Since v, (t), v, (t) € €, by the definition of convex set, v, (t) € §. Hence 2 is simply connected set.
(b) Suppose v, (t), 7, (t) : [0,1]% — € are two curves lying in 2. We define 7,(t) as

s€0,1/2]
s €10,1/2]
se(1/2,1]
se(1/2,1]

(u) + (1 —a)z for t € [0,1/2] A

v (1) = ayy(l—u)+ (1—a)z, forte(1/2,1] A
s avy (—u) + (1 — )z fort €[0,1/2] A
ayy(1+u)+(1—a)z forte(1/2,1] A

where

a(s,t) = y/cos2 it + (1 — 25)2 sin? 7t

1 L 9 st
u(s,t) = — arcsin( ( s)sinm ) .

™ Vcos2mt + (1 — 2s)2sin? 7t

Since (2 is star-shaped set with star center z, v, (t) € §2. Hence € is simply connected set.

(c) A horseshoe shaped region.

22. Suppose that there is a holomorphic function f satisfying such a condition. Then for all 0 < r < 1,

/ f(x)dz=0
oD, (0)

since f is holomorphic in D. However,

/ f(z)dz = 2mi
oD

since f(z) = 1/z for z € OD. Taking a limit » — 17, we get a contradiction.

Chapter 4. The Fourier Transform

1. (a) By definition of Fourier transform,

AQ =B = [ et = 27 fg) <o

So A(&§) = B(¢) forall £ € R.
(b) First we prove that A(z) is holomorphic in upper half-plane. Define

A, (z) = /t f(z)e 2 ===t g,

Since f(z)e 2™~ is holomorphic for each x and continuous in [—n,t] x {z: 2z > 0}, A, (2) is
holomorphic. Also, A,,(z) uniformly converges to A(z) in any compact subset K of {z: z > 0}
because

< /7n|f(a:)|das.

—00

|A,(2) — A(z)| = ‘/n F(z)e2mie=t) gy

Therefore A(z) is holomorphic. Similarly, B(z) is holomorphic in {z : z < 0}. Since A(£) = B(§)
for all £ € R, by Schwarz reflection principle, a function F’ defined by
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is holomorphic in C. Note that

A(2)| < / (@)l < / ()],

B < [ " f(@)lda < / (@) d.

So F' is bounded. Since F' is holomorphic and bounded, it is constant. In particular, A(iy) — 0 as
y — oo thus F(z) = 0.
(c) Forallt € R,

/ f(z)dz = F(0) =0.

Hence ft b2 g (x)dx = 0 for any t,,t, € R.If f(z) is not identically zero, then there exists x, such
1

that f(z,) # 0. Suppose f(z,) > 0. (The case f(x,) < 0 is proved similarly.) Since f is continuous,
there exists § > 0 such that

o ol < 6= 17(@) — Flao)| > 317 (@)l = f(z) > 5f(a0)

Then
To+d zo+6 1
[ twde> [ sy = ) >0
zo—0 zy—0

which is contradiction.

2. The case of b = 0 is trivial. Suppose 0 < b < a. Since f™ is holomorphic in S, C S,, using Cauchy
inequality gives

n! n! A n! A

") (z +iy)| < — S o T R S BT 3
et < g s HOIS o s /e < B

for all (z,y) € R x (—b,b), where R = (b —a)/2.

3. The case of £ = 0 is simple. If { > 0, we integrate the function f(2) = 595 e~2™% over the lower
semicircle of radius R.
ai
—k i TR

—ai

ai
TR ~R R
—ai
contour when £ > 0 contour when £ < 0

By residue formula,

37



-/ * fayda + | 5z = 2ri Res 102)

z=—ai
R TR

Note that |e‘2mzf| < 0 whenever Im(&) < 0, so integral over the semicircle goes to 0 as R — oo. Hence

o
/ f(x)dr = —2mi Res f(z) = —2mi- ; _e2mi(—ai)l = re—2mad — ge—2mald],
oo z=—at —4Zan

Conversely, if £ < 0, then integrate the function f(z) over the upper semicircle. Similarly to argument
above, the integral over the semicircle tends to 0 thus

/ f(z)dz = 2miRes f(z) = 2mi - %6_2”““)5 = me2ma€ — pe—2malé]

z=at al

Therefore

- - . e—2‘mar:£daj — e—Qﬂa\E\_
0 a“+x
—0o0

By the Fourier inversion formula, we get

00
/ e—27ra\§\e2m'§xd§ — l a

2 2"
o Ta*+x

4. Let’s say {w,} be the roots of ) in the upper half-plane, and {z,} be the roots of ) in the lower half-
plane. Similar to Exercise 3, we can integrate the function f(z) = e=2™%¢ /()(z) over the appropriate
semicircle to obtain a integral.

R Tr
® 2o Wy
* 2 ® Wy
TR —R

contour when £ > 0 contour when £ < 0

—R

For the case £ > 0, integrate the function f(z) over the lower semicircle and take R — oo to get

[eS) 727rzz.£ 7271'226 Zk .
727rzz
o —2mi Z ZRii —2mi Z zlglek oG
—2miz, €
e k
= —2m
; Q' ()
Otherwise, if £ < 0, integrate the function f(z) over the upper semicircle and take R — oo to get
oS} e—27rzac§ —27r1zf k: amize
— 7T7/Z
Q ( = 273 Z zRﬁ;Sk = 273 Z zlirijlk —
—2miwg&
e k
= 2m

wzk Q' (wy,) ‘

Finally, if £ = 0, we just get
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x = 1//@(0)

1
o

Even if several roots coincide, we can simply find the residue of the that poles and add it.

5. (a)

(b)

(©

(d

6. Define f(z) =

Similar to Exercise 4, just integrate the function f(z) = R(z)e 2™ in the upper semicircle with
radius R and take a limit R — oo to get

o k
/ R(z)e 228 dy = 2mi Z Res R(z)e 2=,
) j= =g

Let m; —mul( ) then

. d\"™ (P , m
zfi%i R(Z)e—27rzz£ = <m — 1>' ZILIB <d2> <6223e—2ﬂ'1z5<2 — Oéj) ]>
— P}(E)e—%riajf.

This completes the proof.

If Q(z) has no zeros in the upper half-plane, then there are no residues to add up, so the integral is
simply 0.

Denote the zeros of f(z) in the lower half-plane as { ﬁj}. Then integrating the function f(z) over
the upper semicircle of radius R and taking R — oo gives

/ ( 727rm:§dx _ Z Q —271'1ﬁ]
—00 2=0;

Where (); is a polynomial of degree less than the multiplicity of ;.
Since ‘6_2”“‘15’ = e~ 2mIm(a;)[¢| for £ < 0,and ‘e‘QmﬂJq = ¢~ 2mIm(=5;)l¢l for &€ > 0, a has to satisfy
the inequality

a < 27rmin({hn(aj) U Im(-@-)}) =27 min{|1m(’yj)‘}

where the {'yj} is the zeros of Q.

By Exercise 3, we know that f(&) = e~279l¢l. By substituting f and f to the

1
T a2+z2

Poisson summation formula

S i) =Y )

nez nez

we get

1 N —2ma|n|
T Z a2—|—n2 - Z € :

n=—oo n=—oo

In addition,

0o 00 e—27ra 6277(1 +1

Z e~2malnl — 14 9 Z e~2man — 1 49 = = coth 7a.

1— e—27ra eQTra _ 1

n=—oo n=1

7. (a) Define f(z) = 1/(7 + 2)*. We want to calculate

= [ e

oo (TH2)
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If ¢ > 0, then we integrate the function e=2™*¢ /(1 + 2)* over the lower semicircle of radius R.

—R R

Tr

Since ‘e’Zsz‘ < 1 whenever Im(z) < 0, the integral over the arc goes to 0 as R — oo. By residue
formula,

. —2miz€ 1 d k—1 A o k ‘

However, if £ < 0, we integrate the function over the upper semicircle. Since there is no poles inside
the contour, the integral is

PN

f(&)=0.
Simply f (0) is also 0. Therefore by Poisson summation formula,
- 1 _ (—2mi)F & k—1,—2miz€
71:27:C>C(7—F7L)’“_(k—l)!mz:;g ‘ '

(b) Set k = 2 then the right hand side becomes
O .
(_27.”-)2 Z me2mimT
m=1
Since
o) ) 627ri7'
Z 627r7,m7' — D
= 1—e

differentiate both sides to obtain

e ) 6—271'7'1'
271 E me2™imT = 2.
— (1 _ 6—2777'1)
Therefore

[e%s) [e%s) 2

1 ) 1 ™
E T = — 452 E me2mmT — 472 . - — = .
el (t+n) — (emTi — e=7Ti) sin?(7T)

(c) The case Im(7) = 0 is proved via taking the limit Im(7) — 0. If Im(7) < 0, then Im(—7) > 0 so
o0 1 2

Z (—7 +n)? - sin?(—nr)’

n=—oo

Therefore

) 1 o0 1 o) 1 2 2

ZOO (14 n)? - Z (t—n)? - Z (—7 4+ n)? - sin?(—n7) - sin2(77)’

n=— n=—oo n=—oo

8. By the Fourier inversion formula,
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M . ) M R ]
fz) = / f(e)exmede = f)(z) = / F(€)e2mE (2mie)nde.

M —-M
Therefore
4y = 2 fW(0) = —mi) [ feend
-M
’f’ is continuous in [—M, M] so bounded, hence there exists A > 0 such that ‘f‘ < A. Then
M M 1
o, | < 2o [ [F©)]l€nide < 2mra [ jelnde = 2mra -2 un
Y Ry n+
and
2AM\ V"
(n!]a, )™ < 27 M - ( ) .
n+1
Therefore

lim sup (n!a,|)"/™ < 27 M.

n—oo

o0 n .
_o @ 2" with

Conversely, now suppose f be any power series f(z) = > "

lim sup (n!|a,,|)"/™ < 27 M.

n—oo

Then for every € > 0, there exists N € N such that
n>N = (n!|an|)1/" <2n(M +e¢).

Un < om(M + g)/(n!)™ — 0 as n — oo, so radius of convergence of f is co.

First observe that |a,,|

Also,

N 0 n
FOI< Y laller+ > B
n=0 :

n=N+1

N
< |an‘|z|n +€2W<M+E)‘Z|.

Since the rate of growth of Zg:0|a
A, > 0 such that

»|1Z]™ is no more than an polynomial of degree < N, there exists

F()] < A,

. (a) This is special case of (b) with 5 = 1.
(b) We define

cos(v6) > O forall z = re’® € S.

41



Observe that
|FL(2)| = |F(2)||e™=*"| < CelHl” . emelzlTeos™(@/(28) 0 as  |2] — .

Therefore F] is bounded. Let
M =sup|F.(2)|.

2€S
Suppose F' is not identically zero, let {w]} be a sequence of points such that |F; (wj)| — M. Since
M # 0 and F, converges to 0 as |z| — oo, {w]} is bounded. Hence w; — w € S. By the maximum

principle, w cannot be interior point of S. So w is on the boundary of S. Since |F'(z)| < 1 for z on
the boundary of S,

|E(w)| = [F(w)||e™=”| <1 = M<1.

Finally, taking a limit € — O concludes the proof.

10. By shifting the contour of integration, we obtain
flerin = [ fajemecings = [ flo— igjemie i,

—0o0

Therefore

|f(&+in)| = ’ / o — iy)e 2= &) dy

&)
— ’/ f((L‘ _ iy)e—27riw£—27ry§+27rw’r)—27riyndm
—00

o0 o0
— o2y / |f(l’ _ iy>|627rzndx < e—2mYE / Cefa902+by2627rm7dz
00 —o0

o0 ﬂ.2 oo
_ 06727ry§+by2 / 67a$2+2m7$dx — 06727ry§+by2+7n2 / e*a@*ﬂ'ﬂ/aﬁd:ﬂ_
o0

—00
Now letting y = 7€ gives

|f(&+in)| < (C / h e-axzdx> e THETT,

—0o0

Hence C’ = \/7/aC,a’ = 7% /b,b’ = 72 /a satisfies the inequality.

11. If 22 < y2, then
()] < Cearli = Cearareat? < Cemers®ssery?

so |f(z)] = O(e"”?*byZ). Now suppose x? > 2. Without loss of generality, we can consider the case
arg z € [0, 7/4]. We denote r = |z|. Note that | f(z)| < Cye " when argz = 0, and | f(2)| < C e™
when arg z = /4. Define

Then
argz =0 [F(2)] < G’ e = 6,

argz=7/4: |F(2)] < 016017‘26—017“2 =C,.
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By Phragmén-Lindeldf principle, we can get

|F(2)| < C, argze[0,m/4].

Hence

\f(z)| < C‘e<7027i51>22

= C‘e(*52*i51>(1+i9>2‘ — Qe c2(@®~y?)+2c,my

1 2 23\ 2
—5C12°+| et o )Y

— Cefc2z2+czy2+2qzy < Ce

In the last inequality, we used arithmetic mean-geometric mean inequality

12. (a)

(b)

(©

2
2ct

2c,7y < %2302 + 2

o
Let £ = o + i7. Since f(z) = 0(67”2),

\fif)\::‘/fajf<x>e%ﬂxédx

0o
— ‘/ f(m)6727rira+27rm7'd$
—00

< [ ls@lerras
—oo
o) %)
< C/ e—7r1"2+27rw7'dw _ C/ €—7T($—T)2+7I'T2 dr = CeTI'Tz'

Therefore a function f,, defined by f, (§) = f:} f(z)e~?*¢dz is holomorphic and uniformly
converges to finall compact subset of C. Hence f(£) is holomorphic. f is even because

o= [ awentar= [ enensan = [ pwoema = je)

Now define g(z) = f(2'/?). Then |g(z)| < ce™™ since f(€£) = O(e‘”52>. Moreover,

19(2)| = ‘f(zuz)‘ < cem™ < cem(VRSn0/2)" _ L oxRsn(6/2) < penll.

Now define F(z) — g(z)evz, where v = ZW%//E;‘;) = 7 4+ imcot 71'/(2[3) Observe that

argz=0: |F(z)| = |g(x)||e"| < ce ™ || = ce”™e™ = ¢,

argz = 7/4: |F(2)| = g(2)]]e] < cele e = c.
By Phragmén-Lindel6f principle, we get
|F(z)] <e.

Take a limit 8 — 17 then v — 7, so €™ ¢(z) is bounded on closed upper half-plane. Similarly, same
result holds in lower half-plane. Since e™#g(z) is holomorphic and bounded in C, e™#g(z) is constant.
If f is odd, then f is also odd so f(0) = 0. Then f(z)/z is entire. Note that g(z) = ]?(,21/2)/21/2 also
satisfies the conclusion of (a), since g(z) is bounded in |z| < 1 and g(z) is even smaller than f (zl/ Z)
when |z| > 1.

Now we white f(2) = foen(2) + foqqa(2), where

f2) + f(=2)

f(z) = f(=2)
2 ’ '

fcvcn (Z) = 2

foaa(2) =

Since f(—z) = O(e”T(’w)z) = O(e*m‘/’2 ) foven and f 4 is also O(e’”2>. Therefore we can apply
the above argument and deduce that f = f =0.
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Chapter 5. Entire Functions

1. Observe that if f; and f, satisfies the hypotheses and conclusion, then the product f;f, also
satisfies the hypothesis and conclusion. Let {z;,--, 2y} be the zeros of f inside D. Then g(z) =
f(z)/(z/JlepZ2 wZN> is bounded near each z;, so each z; is removable singularity of g. Also, g nowhere
vanishes in D since 1/|z;| > 1. We write

For g, proof is same with step 3 of Theorem 1.1. We prove that Jensen formula holds for each 1, that is,

|'lU| 1 /271’ w — ei@
1 =log| — — log| ——| dé.
oglul °g< 1) o) BT men
Since
27 w— eif 2m _ 2m .
/ log|——— d@:/ log‘w—ew’dﬂ—/ logyl—@ezede:O—O:O,
o 1 —we? o 0

the equation holds.

2. (a) For every integer m > 0, there exists € > 0 such that
|z|™ < AePIA°  for all z € C.

Hence the order of growth is 0.
(b) The order of growth is n.
(c) There is no p such that

|eez‘ < AeBl” for all z € C,
because for real z = x, taking a logarithm on the inequality above gives
e? <logA+ Blz|? forallzeR

which is false for large z. Thus the order of growth is inf & = oo.

3. Observe that

o0

) )
‘®(Z|7_)‘ < Z ‘eﬂinQTGQﬂ'inz —_ Z 677‘I’7L2t|€2ﬂ'i’n2‘ < Z efﬂn2t€27rin|z\.

n=—oo n=—oo n=—oo

The last power series converges because

—mn2t+2mn|z| < 677\'7L2t

e when n — —o0,

efwn2t+27rn|z| < 677‘!‘1’7,2t/2 when n — oo.

Hence

oo 00 oo
E effrn2t627rin\z\ _ E efﬂt(nf\z\/t)ngﬂ'\z\Q/t _ E 6771’15(n7|2|/t)2 e‘n’\z\z/t
n=—oo n=—oo n=—oo

which has order of growth 2.

Note. I proved that ©(z|7) has an order of growth < 2, but i don’t know how to show that order of
growth is exactly equal to 2.
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4. (a) We write

N oo
]-71(2:) = H(l _ e—27rnt€27riz) and Fé(z) — H (1 _ e—27rnt627riz)
n=1 n=N-+1
where N = (% — 1—‘. Since (N + 1)T > |2|,
Z 67271'711‘/6271’\2'\ < ﬁ
— e s

n=N+1
Hence

|F‘2(2’)| = H ‘1 _ 6*27rnt+27riz’ = exp ( Z 10g’1 _ eQTrnt+27riz|>

n=N+1 n=N+1

< exp< Z e27rnt+27r|z|) < exp(l/(l _ 6727”5)),

n=N+1
where we used the inequality log|1 — z| < |1 — z| + 1 < |z|. However,
’1 _ 6727rnte27riz| <14+ e27r|z| < 26271'\2'\'
Thus
|.F1(Z)‘ < 2Ne27rN\z\ < 2\z\/t62ﬂ'\z\2/t.

Therefore F'(z) = F,(z)F;(z) has order of growth < 2.
(b) Since the order of growth of F'is 2, by Theorem 2.1 (ii),

1

|2

for every positive number €. Note that

Z 1 >§: 1 >/oo;dx—l—larctan<l)
m2+a2 ~ m?+a? = ) 2?2+ a? T 28 a a)’

meZ m=1

Hence

1 _°° 1 >oo T 1 t ) )
ZW_ZZM—Zm_marcan(m>_oo

n=1meZ n=1

5. Note that following inequality holds;
e af(a=1)
-+ 2rlelle] < el

because if [t|*! < 47|z, then

tOé
4 el < 2leli] < 2ty e opesio,

otherwise, [t|*~1 < 47|2| implies
|t 1 -1 (a—1
oo = Sl (amle] — o) < 0 < Jefere-,

Now we can get
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oo oo oo
|F,(2)] < / et Femizt| gy < / eIt e2milzlltl gy < / e 1t°/2qt | eelzl™/e
o0 o0 —0Q

Hence F,, has order of growth < o/(a — 1).

0o Z2
sinwz:ﬂzH 1—— .
n2
n=1

T 77_00 e 2n-2n
§H( 4n2> 2 H4n2—1 H (2n—1)(2n+1)

n=1 n:l

6. By the product formula for sin z,

Put z = 1/2 to get

7. (a) Note that |a, | — 0 as n — oo because 3" |a,,|* converges.

nl
First we suppose that > a,, converges. Note that
1 1 1 1
log(1+a,)=a, —fa —|—3an—1an—|— —§an—|—ka

1

where k,, = za,, — a2 + - — 0 asn — co. Since 1/2 — k,, is bounded,

converges. Hence

N N
H(l Ta Helog lt+a,) — p(z log(1 +an)>

_ n=1
N N 1 ) oo > 1 )
= exp gan—zl(Q—kn)an — exp ;an—;(Q—kn)an .

Therefore [ [(1 + a,,) converges to a non-zero limit.

Conversely, suppose [[(1 + a,,) converges to a non-zero limit. Similar to argument above, we get

N N N g
exp (Z an) = H(l +a,) - exp <Z<2 — kn>a%> .

n=1

Since right hand side converges as N — oo and lim =0, Y a, also converges.

n—00 n
(b) Let a,, = (—1)"/y/n. Then > a, converges because it is alternating series. Note that > a2 =
> 1/n diverges. Now let

11 1 1
= ~a, +-a? —

n 3 4o 5n ga%+

thenl,, — 1/3asn — oo and Y [,,a3 converges. Similar to argument above,

N N 1 N
14a,) =ex a, | -exp| —= a? | -ex l,a3 |.
If [[(1 +a,) converges, then Y a2 also converges, which is contradiction. Hence [[(1 + a,,)
diverges.

(c) a, = (—1)"then [[(1 + a,,) = 0 converges to 0, while > a, = > (—1)" diverges.
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8. Use the fact that sin 2z = 2sin z cos z.

10.

11.

12.

N N [ - . . .
z\ sin(z/2571) ) 1 sin(z)  z/2V sinz sinz
kl:[lcos(?J N H ( 2sin(z/2%) ) T oN sin(z/2N)  sin(z/2V) Tz 2

k=1

as N — oo, since z/2" — 0 forall z € C.

. Use the fact that (1 — 2™)(1 + 2") = 1 — 22" Since

N
(1—2) JJ(1+2*") =1-22"",
k=0
we get
N ‘ 1— oN+1 1
[[(+2) ==~

as N — oo for every |z] < 1.

(a) Since e* — 1 has zeros at 27ni (n € Z) and has order of growth 1, by Hadamard’s factorization
theorem,

z_ 1 = eaztb (1 _ o ) z/(2mni) (1 o ) —z/(27ni)
‘ ¢ 27];[1 2mni )€ + 9mni )€

b T i
= e®*thy 1 )
71:[1 + 4m2n2

Divide both sides by z and take z — 0 to get €® = 1. Furthermore, (¢* — 1)/e%* is odd, hence a =
1/2. Therefore

e’} 22
o1 =e? 1+ ——|.
e e zTH( +47r2n2>

(b) Since cos7z has zeros at z =n+ 1/2 (n € Z) and has order of growth 0, by Hadamard’s factor-
ization theorem,

cosmz = e° 1°_°[ 1 427
Tz = - .
vt (2n+1)2

Put z = 0 to get e = 1. Hence cosmz = [[°° (1 —42%/(2n +1)?).

Suppose f misses a, . Since f is of finite order, there exists a polynomial p such that
f(z) —a=eP?  forall z€C.

There is no z such that f(z) = b, so there is no z such that p(z) = log(b — a). Hence p must be constant,
then f is also constant.

Since f is entire and never vanishes, and of finite order, there exists polynomial p such that f(z) = e?(*)
for all z € C. Hence f’(z) = p’(2)eP?). f” also never vanishes, thus p’(z) must be constant. Therefore
we get p(z) = az + band f(z) = e®**?,
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13.

14.

15.

16.

Note that the order of growth of e* — z is 1. If equation ¢* — z = 0 does not have infinity zeros, then
N
€% — 5 = eAz+B H (1 _ Z>ez/an
n=1 n,

by Hadamard’s factorization theorem. Putting z = 0 gives e® = 1. Observe that letting C = A +
22[21 1/a,, gives
al z
z Cz
—z= 1——.
el )

Considering the rate of growth, it must be C' = 1. Dividing both sides by e* to get
z il z
-2 =TI )
Taking z — oo for real z gives 1 = 400, which is contradiction.

Suppose F' does not have infinity zeros. By Hadamard’s factorization theorem,

N N
F(z) = eP)zm H E,(z/a,) = el ;™ H (1 — Z)
n=1 n=1 Gy

where q(2) = p(2) + Zﬁle (24 22/24 -+ 21?1 /| p]) is a polynomial of degree < |p|. Observe that
order of growth of left-hand side is p, while the right-hand side is | p|. Since p is not an integer, p # |p],
we get contradiction.

The any meromorphic function f in C, by definition, is holomorphic in C — {2, z1, ---} and has poles at
the points {2, 21, -}, where {2, 21, -} has no limit points. By Theorem 4.1, There exists a function
g such that has zeros at each z = z;, and there are no other zeros. Then h = gf has no pole, therefore
entire. Now we can write f = h/g.

Suppose {a,, } and {b,, } are disjoint sequences having no finite limit points. Then there exists function
f and g such that f has zeros exactly at {a,,} and g has zeros exactly at {b,,}. Now h = f/g is a
meromorphic function that vanishes exactly at {a,, } and has poles exactly at {b,, }.

Since {a,, } has no limit points, lim,_, |a,,| = co. We can assume that a,, # 0. For any compact subset
K of C, there exists N € N such that

n > N = |a,| > sup|z|.
zeK

Observe that each ﬁ is holomorphic in disc |z| < |a,,| for n > 1. By Runge’s approximation theorem,

Q ( 1 ) can be uniformly approximated by polynomials P, (z), thus

1

for all n > 1. Now consider the function

1
< o0 in disc |2] < |a

nl

Since z € K = |2| < |a,,

>




is holomorphic in K. Moreover,

o) xe)

n=1 n

is meromorphic function which has poles at a,, (1 < n < N) with principal parts @Q,, (z a ) By the

arbitrariness of K, f(z) is meromorphic function which has poles at a,, (n > 1) and principal parts

Q < L ) at each poles.

n\ z—a,

17. (a) Define

n

Z (z—ay) (z—a _)(z—aq) (2 —a,) b

iz (a;—ay)(a; —q 1)(az‘*az‘+1)"‘(az‘*an)

i

then P(a;) = b, holds forall 1 <i < n.
(b) For any compact subset K of C, there exists N € N such that

n> N = |a,| > sup|z|
zeK

because lim;,_, _|a;| = oo. Note that a,, ¢ K for all n > N. Since E(z)/(z — a,,) is bounded in K
for each n, there exists M, > 0 such that

E(2)

M, = sup
zeK

n

Moreover, |E(z)] is also bounded in K,
E(2)

z—a,

< fim JEG)

lim
g, — [

n—oo

=0, VzeK.

Thus lim M,, = 0. Therefore M = sup,,.y M,, satisfies

n—oo

z—a,

<M, Vze K,Vn> N.

Let F (z) be the partial sum of F up to k = N. There exists ¢ € (0,1) such that |z/a,,| < gfor Vz €
K,V¥n > N.Hence

- b E(z) (z\™ = by,
|F(z) = Fy(2)| = | > e () <M Y |5 "< oy
N My o) E'(ay) z — aj \ ay, WS E’(ay,) 2N

where we choose m,, large enough so |b, /E’ (a;,)|q™* < 1/2F for all k > 1. Therefore F,, uniformly
converges to F' in every compact subset K of C. Since E(z)/z, E(z)/(z — a;,) are holomorphic, F'
is also holomorphic. Note that

b B b E@—Emm{m (i=1k)

lim = lim
ama; B’ (ay) 2 — ay, ZL“! E(ay,) Ay

Accordingly,
F(a) = lim F(z) = lim lim Fy(z)

z—ay, z—a N—oo

T b, (N>k)\
= Jin i A= g Byt = g ({5 (Y2 5) =0

forall k > 0.

Note. The interpolation formulas to both problems have similar forms.
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n

3
=
Ead
&=
—~
N
~—

(a): F(z)= 2 B (ag) = — a where E(z) = ]!:[O(z —ay),
' )= " b, E(2) K2 e where (2/0)0 :=
) P =Y s PO () here (:/0)

The term (z/a,,)™* is added in order to guarantee the uniform convergence of series.

Chapter 6. The Gamma and Zeta Functions

1. Note that 1/T'(s) satisfies the following equation:
L = lo_o[ 1 + *S/k
I(s) -~
Therefore

N 5.1
k s/k nn!

1
-k ys L
['(s) = lim e s”

n—00
k=1

e’k — lim e(‘;(1+1/2+~~~+1/n— log n—=)

s+k n—oo (s + 1) (s+n)

nsn!

=1 .
o0 s(s+ 1) (s+n)

2. Simple calculation leads to

ﬁ k+a+b) ~ (a+b+1)-(at+b+n)-n
a)(k+b) (a+1)-(a+n) - (b+1)-(b+n)

natinl nb+1n!
- ((a+1)~-~(a+1+n)> ((b+1)~--(b+1+n)> '

((a +b+ 17)1;“()21;? +1+ n)) ((a Z(E:Z)J(rb;rl;; n))

:1

CTla+D)T(b+1)
 Tla+b+1)

3. Note that the general term of Wallis’s product is

(%) ' (ﬁ) ((271 —2711)(22 ¥ 1)) =2 (%) ' (%) <(2n —T1L>'(Zn ¥ 1))
o (n1)?

=Y G ety

__94n (n')4
=2 ((2n+1)!)2

5(2n+1).
Hence

12
\/zz lim 2Q”L\/2n+1.

n—ooo  (2n+41)!

As a result,
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nstan) 25(2s4+ 1) (2s+n)

L'(s)I'(s+1/2) lim n°n!
I'(2s) Cnocos(s+ 1) (s+n) (s+3)(s+3)(s+14n) n2sn)
22n+2n%n!
= lim
n—oo (2s+n+1)-(2s+2n+1)
227 (pl)? 1)--(2 1
= lim 27 {nl)” (2n + 1) - 22 L (ntl)-@ntl) .
n—oo (2n + 1)! 2n+1 (2s4+n+1)-(2s+2n+1)
Since letting a,, = <2S+<Zﬂ; :::g?jzlr)wm gives
n+1 n+1
2s 2s 1
—1 = log| 1 = —
8(an) ;Og< +n+k> kz_;(n+k+ (712))

2s

n+1
B ; 1+

1 1\ nooo 1 2
f—&—O(f);/ 5 dr = 2sln 2,
n n 0 1+

SES

we get a,, — 272% and

Ds)(s+1/2)  [m 4 o0 1o p
e

4. Since
fM(z) = (—a)(~a=1) - (~a—(n=1))(1 -z (-1)",
we get
Therefore
a, (o) ala+ 1) (a+n) n
W—F(a)- non! 'n—&—oz_)l
asm — 00.
5. We first prove that I'(5) = I'(s). This is because
= ; n°n! . nsn! N
rE) =, 3G ~(5+n) 5 (s(s +1)(s+ n)) =L

Hence
T T 2
I'(1/24+1it)| = /T(1/24+it)[(1/2 —it) = = =4/ .
[P@/2 + i) = VEQ/2+i0)0(1/2 ~ it) \/ sinm(1/2+it)  \ cosinmt et 4 et

6. Let’sdenote H, =1+ 1/2+ -+ 1/n.

51



11
L+ -+ +-+

3

1
5 2n —

7. (a) By definition,

1 2

L (1+1+ 4—1) 1<L+1+ +1) L
— —logn = — _ ] — = — — | — =logn
& 2 m) 2 2 n) 2%
1 1
:HQn_§Hn_§logn

1
= (Hy, —log(2n)) — 5(H, —logn) +log?

1
—>y—§7+log2:%+log2.

Ta)(B) = /OO /OO to 1B le =5 dtds.
o Jo

Now make the change of variables s = ur,t = u(1 — r). Note that

and dsdt = u dudr. Thus

’ d(s,t)
O(u,r)

1=y )| 7Y

I
o
3
S
>
<
)
+
P
AN
—~
—
|
=
Q
|
AN
<4
P
AN
ml
S
QU
3
QU
I

Il
R
o~

8

IS

Q
+
P
-
Q\
g

QU

IS
N~
N
o

>
—~
—
|
=

Q

L

<

P

i

oW

)
~_

(b) Simply change the variable t = 1/(1 + u) to get

o= [l a-omtas [ () () e

———du.
1+ u)etB “

8. By the properties of beta function,

-1

Therefore

2.

1 ) bl 1 oo irt)" bl 00 n 1 b1
/ ezxt(l_tQ) édt:/ Z(’LZ') (1—t2) : :Zlnx' / tn<1—t2> édt
—1n=1 : :

1 1
/1ﬂm04¢ﬂ%7ﬁ
0
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(@/2" [ b (@/2)7 & (=)t !
T(v+1/2)y7 ,16 (1—t5)" 2t = 1/2)fz (2m)! <V+ ;

2
Gy —1)ma?m D + 1T (m +
1/2)\FZ rem+1) Tw+m+1)

- (g)umz FEV }i-)?:n +m1 mi22m (g> %

m+

N | —
N———

)

N)\»—A

ﬁM

whenever z > 0.

9. Note that
(1—zt) > = ia(a +1) (a4 (n—1))(zt)".
n=0
Hence

:L lﬁﬂ — )AL Ooaa (o + (n— 247
F(ﬁ)l“(v—ﬁ)/t (1-1) (Z (a+1)(a+ (n—1))( t))dt

n=0

_OC&OLQ vla+(n—=1))z" 1n+ﬁ*1 — )81
=3 g+ Do+ (=) /Ot (1051t

e (v
N L) i D olas (n— L =BT+ 0)
=2 TG g et D et - D)
oot (et (=-1)8F+1) - (B+(n=-1)) ,
=142 YD)+ (n—1) '

10. (a) Integrate the function f(w) = e “w*~! around the contour below.

TR

N

€ R

f(w) does not have pole in that contour, by Cauchy’s theorem,

/ER f(x)dz + L f(w)dw + /RE f(it)idt + LR Flw)dw = 0.

First, we show that the integrals over the quadrant converges to 0.

w)dw| <

™
< 75 sup |€ w z—1| — §€ . sup e—scnsé’ERc(z)—le—GIm(z—l)

WEY w=eeifey,

< Te Attt = Zaghets) 20 g,

Moreover, § = R~(1+Re(2)/2 /2 to get
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us

< /2 echosGRRe(z)efelm(zfl)dQ
0

[ rwye

TR

r_§ fud
— /2 CRRe(z)e—Rsin6d6+/2 CRRe(z)d9
0 7o

_ (g _ 5) Cle—Rsin 6RR,e(z) + CcsRR.e(z) oo 0.

/ e’mmz’ldazz/ e~ (it)*"1dt.
0 0

Left hand side is equal to I'(z), and the right hand side is

Therefore we get

oo o0
/ et (it)*Ldt = / (cost —isint)i(it)*~1dt
0 0
o (o)
=41 / sin(t)t*~tdt + i* / cos(t)t*Ldt
0 0

= (sin(ﬂ'g) — icos(7r%)>]l/[(sin)(z) + (cos(wg) + isin(w%))]\f[(cos)(z).

Hence
sm( g)M(sin)(z) + cos(7r%>]1/[(cos)(z) —T(2)
cos (7‘(%) M (sin)(z) + sin (7‘1’%) M (cos)(z) =0,
and

M (cos)(z) = T'(2) cos (7’1’%), M(sin)(z) =T'(2) sin(wg).

(b) Since [sin(¢)t*~!| ~ 8¢(*) near t = 0, the integral fooo sin(t)t*~1dt converges for —1 < Re(z) < 1.
Second of the above identities is valid in the larger strip —1 < Re(z) < 1by Corollary 4.9, Chapter
2. Finally, taking z — 0 and z = —1/2 gives

sin(7%) 7

/0 ST e = llir(l) I'(2) sin(w%) = lim 2I'(2)

X z—0 z 2’
® sinx 1\ . —1/2 1
/0 de = F(_i) sin <7r2> =2/ - <_\@> = /2.

11. First observe that

@tiy

flz +iy) = e?@Fv)e=e

_ ea(w+iy) e—¢” (cos y+isiny) ,
SO
[Fla -+ iy)| = enme oy,

Since a > 0 and cosy > 0, this function exponentially decreases as |x| — co. Also,

f(§) — / flz)e 2minsdy = / 04T g—e” =2zl o / e~tta=2miE-1 4t — D(a — 27mif)
—xo 0o 0

Where we changed the variable ¢ = e”.
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12. (a) Since I'(s+ 1) = sI'(s),
(-0 re )
) () (-8 (3| e

T(—k—3)[ T(3)
Therefore 1/|I'(s)| is not O(el*!) for any ¢ > 0.
(b) Since the order of growth of F'is 1, by Hadamard’s factorization theorem,

Hence

F _ JAs+B ] 1 S —s/n _ (A*"/>S+B vs > 1 S 7S/n . e(A77)5+B
e H( +o)en=e ¢ H( 2 )e =TT
I F(s) = O(ecls‘>’ then 1/T(s) = F(s) - e~ (A=75=B js also O(ec‘s‘), which is contradiction.

13. Note that I'(s) = [ | Wnésﬂl) Hence

logT'(s) = Jgrgloslogn—logsqtz log(s + k) — log(k))

. s s
= nh_{gos(logn—Hn) —logs—&—;(k —log(l + E))
= —sy—logs+z<% flog(l + z))
k=1

Since the series 220:1 (% — %H) = E;O L k(ms uniformly converges in any compact subset of C,

dlogF(s)__ 1 (7_7>
ds -7 s+k2::1 E k+s/)

Also, z | T +s>2 uniformly converges in any compact subset of C, thus

d*1ogT'(s) _i_*_i i
ds? T 82 kl (k+s)? = (s +n)?

whenever s is positive number. Observe that I (s)/I'(s) is well defined for s # 0, —1,—2, -+, and the
formula

<F’(s) ) ’ B i 1

I'(s)) = (s+mn)?

holds for all s > 0, it also holds for all complex numbers with s # 0,—1,—2,--- by Corollary 4.9,
Chapter 2.

14. (a) Let f(z) = logI'(x), and F(z) be a primitive function of f(z). Then

d

dm/: f(t)ydt = dci(F(:c—i-l) F(z)) = f(x+1) — f(z) = logT'(z + 1) — log I'(z)

= log(aT'(z)) — log'(x) = log z.

Therefore, we integrate both sides to get

x+1
/ ft)dt = zlogz —logz + c.
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(b) Note that I'(z) is monotonically increasing for all large . So

z+1
logT'(z) < / logI'(t)dt <logT'(x + 1),
x

that is,
logT'(z) < zlogx — x4+ ¢ <logT'(z + 1).

Therefore

(x—1log(z —1)—(r—1)+c<logl'(z) <zlogz —z+c
and

(x —1)log(zx —1)—(x—1)+c¢ < logT'(z) < zlogx —x +c
rlogx —x T zlogx—x = zlogxr—=x
which follows by
Jim llggr(_) =L

In fact, logI'(n) ~ nlogn + O(n) since

lim log'(z) — lim logl'(z)  wlogz —ux _1

z—oo xlogx + O(z) a-ocxloger —z zlogar + O(x)

15. Since 1/(e* — 1) = Z e,

[

1€

o0 o
/ e "dx = Z/ e s~ ldy
0 n=1vo0
o0
=2

> /00 t s ldt (i n15’> (/OOO ett81dt> — ((s)T(s).

Note that we changed the variables t = nx.

16. Write

The second integral defines an entire function, while

1 s—1 0
x° B,
do=Y —m
/0 e 1" = ml(s+m—1)

th

where B,,, denotes the m"™ Bernoulli number defined by

00
=2 ra
m!

m=0

Then B, = 1, and since z/(e* — 1) is holomorphic for |z| < 27, we have lim sup,,_,. |B,,/m!|
5. Therefore

i B, 1
imsup | ——— = —,
e ml(s+m—1) 27
which means that the series Z 0 m'(ﬁ-iml) converges absolutely. Since

56

1/m _



1/T'(s) has simple poles at s =0,—1,—2,---, and

i

= B
Z ——™ — has simple poles at s = 1,0, —1,—2, -
A=ml(s+m—1)

$) is continuable in the complex plane with only singularity a simple pole at s = 1.
plex p y sing Yy ple p
17. (a) We prove that
I(s) = 7(_1)k /OO ) (z)zsthtde, VE>0
L(s+k)J, ’ -

by induction. The case k = 0 is trivial by definition. Now suppose the equation holds when k = k; >
0. Then

G VI AT P

I(S>F(3+k’o)/o fFo) (z)xsHro—tdy
(
(

= ;ﬁo f(ko)(x);xs'*‘ko - — /Oo f(ko‘*‘l)(x);xs"'kadx
FS"‘ko) S+k0 0 S"’ko

0

1)kotL
= (s+k0 (5 1 ko) / flo @ashode

k0+1
/ f k0+1 S+k0dl‘.
3 + ko + 1

Therefore the equation also holds for k& = ky + 1. Observe that 1/I'(s + k) is holomorphic in
Re(s) > —k, and fooo f®) (z)x*+*1dz is holomorphic in C. Hence I(s) is holomorphic in Re(s) >
—k. Since k > 0 is arbitrary, I(s) has an analytic continuation as an entire function in C.
(b) Puts=-—n,k=n+1toget
= [T 0@z = (171 (-10) = (175 0)
(1) '

0

I(—n) =

In particular, 7(0) = f(0) whenn = 0.

Chapter 7. The Zeta Function and Prime Number Theorem

1. Use summation by parts to get

N N-1
Zann_s =N"*%ay + Z A, (n*—(n+1)7%).
n=1

n=1
By the mean value theorem,

1 1

ns  (n+1)°

—S
- xs+1

S
ns+1

_ sl
- notl’

<|

where s = o + it. Hence the series 220:1 a,,/n® converges in Re(s) > 0. Note that A,, is bounded so
lay| =|An — Ay_1| < 2A. Now we show that this series converge uniformly on every compact subset
K of the half plane Re(s) > 0. There exist o, > 0 and M > 0 such that s € K = Re(s) > o, |s| <
M. Hence
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S —s - —s —s —0 S ‘S|
3 = rartan 32 o - 070 < 4l + Sl
n=N+ = n=

> 1
<N % .24+ MA E =)
noo
n=N

as N — oo. Therefore this series converges absolutely in K. Finally, Z _1 O a,,/n® defines a holomorphic
function in half plane by Theorem 5.2, Chapter 2.

2. (a) Since {a,,} and {b,} are bounded, ) a,,/m® and }_ b, /k* converge absolutely when Re(s) > 1
Moreover, Y ¢, /n® converges because

N

Seos s oS (m ) (S5)(S)

n=1 n=1mk =1 m=1

as N — oo. Let |a,,,| < A, |b,| < B. Then

_N Ay bk
_szs ks

N/m
>

_i(\

n=1 n=1|mk=n m=1
N [N/m] 00 2
] R 0] ( 1)
S5 ) (3

Hence above series converge absolutely when Re(s) > 1.

(b) By (a),
J(Eh) Sz -

m=

(C(s))? = (Z

for Re(s) > 1 and
> 1 oo fa © 1 . =) Ua(n)
C(S S*Q Zzlmi Z :ZE Zlk :Z s

for Re(s —a) > 1.

3. (a) Using the Euler product formula,

% ~[a-v.

p

Since every natural numbers less than N is the product of primes less than N,

Hence N — oo to get

(b) Define a,, = >, (k). Observe that |a,,| < n. Since ((s) -

Kin (ls> = 1, by Exercise 2,
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> > k
1= (2;) (k_luli“">> —Z (;u )—a1++3g+

The equation above holds for all Re(s) > 1. Since |a,,/n°| < 1/n°"! for s = o + it, taking s —
oo gives a; = 1. Similarly, multiply both sides by 2° and taking s — oo gives a, = 0. Repeat this
process to get

1 ifn=1
Z/i(k) o {0 otherwise.

. Since 1/(e%" —1) =3 e ",

oo q—1
/ Q dl‘ _ / Q 51 Z e~ NIT o — Z/ aquemmxs_le_”qmdx
0

1 m=0

0 oo 91
— s—1 _ ,(m—nq)x
= g / - el 2 dg
0

n=1 m=0
s} /oo g—1 ( ¢ )Sl ., dt
=, Qg—m ¢
=170 m=0 ng—m ng—m
] (e’ q—1
= tsle~tdt T =T'(s)L(s)
>(/ )E e

Hence
_ L Q@
L(s) = Ts) /0 prr— dz, Re(s)>1
Now write
1 1/q Q(l’)1'871 1 ) Q($)$571
L(s) ) — dx_%IXs)LK>q T

m —1
Ve Q(z)as1 - Va gma ys—1 - Lea u<g)é dt
- q
— dr = g aq_m/o T dex = mE:O Qg /0

0 e —1 = —1 e*—1 ¢
_1“a/%qu
¢ A= T, e —1
Moreover,
/1 eguus_ldu: /1 e%"i%us+k*2du= iB’C/lilCnu)l sTR=2y,
o ¢ —1 0 = per e A
U ST
=kl g s+ k+1-1

where B, denotes the k' Bernoulli number. (see Exercise 16, Chapter 6.) Therefore
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et —1

1 (X 11 (8 B, B, 1
—q(;)—ﬁq(;( S0
B, , Bim  Bym 1
(Zaqm< 11q+0| qz st1 "

If this series have simple poles at each of s = 0,—1,—2,---, then it is cancelled with simple zeros of

0

1/T'(s). However, there is no zeros of 1/I'(s) such that simple pole at s = 1 can be cancelled with. Hence
L(s) is continuable into the complex plane, with the only possible singularity a pole at s = 1. In addition,

by series expansion above, L(s) is regular at s = 1 if and only if Zq 10 Ay = 0.

5. (a) Since 25:1 (—1)" is bounded, by Exercise 1, the series defining {(s) converges for Re(s) > 0 and

defines a holomorphic function in that half-plane.
(b) Define (y(s) = SN  (—1)"*1/n®. Then

n=1

N n+1
Cn(s) = Z%

Y11 (-t

n=1 n® n=1 n® n®
N4 [v/2] 1
= — 92 _ 21—8 .

Taking N — oo gives ((s) = (1 —2'7%)((s).

(c) Let s = o + it. Since both {(s) and (1 — 2'7%)((s) are holomorphic in Re(s) > 0 and coincides
for s > 1, we know that {(s) = (1 — 2'7%)((s) for all Re(s) > 0. Moreover, ((s) is given as an
alternating series, so ((s) # 0 for segment 0 < o < 1. Hence ((s) # 0 for 0 < o < 1.

By Exercise 4, ((s) can be expressed by

1 G e o gl
C(s) = I'(s) /0 e —1 do = ['(s) /0 er + 1d$

and ((s) is entire function. Integration by parts to get

~ 1 et
C(s) = F<8+1>/0 (e’”+1)2d$'

In particular,

- o0 eT 1

Hence ((0) = —1/2 and we can extend last assertion to o = 0.

6. We will integrate the function f(s) = a®/s over the appropriate semicircle.
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p—
TN YN
0 |c 0 |c

[——
contour when a > 1 contour when 0 < a < 1

First consider the case a > 1. We integrate the function f(s) = a®/s over the left semicircle of radius N
centered at c. Since f(s) has simple pole at s = 0 and Res,_,a®/s = 1,

c+iN as as ]
—ds + — = 2m.
c—iN § TN S
Now we estimate the integral over the semicircle.

s 3m/2 c+Ne'?
a a ,
—d ————iNedo
/ s °° / c+ Neio '€

3m/2 N ;
g/ ~ a¢la™Me’|do

YN /2 /2 —-¢
_ Na® o2 N cos 6
= a de.
N —c /2

Let § = N~1/2 < /2 for large N, then

3m/2 /245 3m/2—68 37/2
/ aNcosOdez/ aNcosOd9+/ aNCOSGdH-i-/ aNcnste

/2 /2 /246 37/2—6

<26+ (7 —28)aNsd — 0
. c+ilN gs .
as N — oo. Hence limy_,, [/ 4-ds = 2mi.
If 0 < a < 1, integrate the function f(s) over the right semicircle of radius N centered at c. Since there

c+iN s s
a a

/ Zds+ / — =0
c—iN $ §

N

is no poles of f(s),

Similar to the case a < 1, the integral over the semicircle converges to 0 because

s —7/2 _c+Ne'? )
/ s / & _iNe®dd
S

. /2 ¢+ Net?
c /2 c 37/2 N cos
< Na // Vst gg — N / / (1) do
N —c )2 N —c /2 a
and 1/a > 1. Thus lim_, fcc_tz]ifv 2 ds = 0.

Finally, consider the case a = 1.

CHIN s c+iN 4
/ —ds = / —ds =log(c+iN) —log(c —iN) =i(0y — 6,),
c—iN § c—iN §

where 0, = arg(c —iN), 0, = arg(c + iN). Therefore
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7. Recall the formula

£(s) = 72T (s/200(8) = 2 [ (i bt et
1

s—1

where ¢(u) = =l _ yoe p—mn’u_ Obyiousl &(s) is real when s is real. Now suppose Re(s) = 1/2,
2 n=1 y 1YY

that is, s = 1/2 + it. Then

§(s) = €(1/2 +it) =

1 1 < s 3t
b [ (et e
1t 1

1 - 1
L —1-

Since £(s) = £(s), we conclude that £(s) is real when Re(s) = 1/2.

8. (a) Let

F(s) = Wg(;ﬂ).

Since £(1/2 + s) = &(1/2 — s), F(s) is an even function of s. Define

G(s) = F(xs?).

G is well-defined because F is even. Hence G(s?) = F(s).
(b) Recall the functional equation &(s) = 7~ */2T'(5/2)((s) and

§(s) = - 1 T é + /loo (v + us )y (u)du, P(u) = % - iemw
Then
ol < [+ [+ [Tl i e
s—1 S L
Moreover,

lo| lo|

o 2 o 2

</ 2u2 1§ 67‘”udu<2§ / u2+15 U e
1 n=1 n=1v0

3\ [ gl dy o] > 1
= 22/0 )\a|/2+1e - 2F<2 + 2) Z (ﬂ_n2)‘0"/2+2
a|

(7TTL2 n=1

fors=o0+it.Let N e Nbe N —1 < |o|/2+2 < N, then

o]

F(E' n 2) ST(N) = (N —1)! < (N — 1)N-1 = (N-1log(N-1) < €(7+2) log(1+2)

IE]

< 6(7”) 103'(%*2) < eculsllogls|

for large |s|. Hence |£(s)| < cyecslsI198l3l for large |s|. Additionally |1/T'(s)| < ¢ e s8Il we know

s — s:ws/2#s— S
(5= 1)¢(s) = 7/ (5= DECs)
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is entire and has order of growth 1. Therefore

has order of growth 1, and

has order of growth 1/2.
(c) Since G has order of growth that is non-integral, by Exercise 14, Chapter 5, there is infinitely many

zeros of G. By definition, F'(s) has infinitely many zeros, and £(s) also has infinitely many zeros.

In the case of Re(s) > 1, then both I'(s/2) and ((s) have no zeros, so £(s) is zero-free. If Re(s) < 0,
then ((s) has zeros at s = —2, —4, —6, ---, but these are cancelled with simple poles of I'(s/2) at s =
0, —2,—4,---. Hence () have infinitely many zeros in 0 < Re(s) < 1. Since I'(s/2) has no zeros in
that strip, ((s) has infinitely many zeros in the critical strip.

9. (a) By Proposition 2.5, Corollary 2.6 of Chapter 6,

Hence

N-1 1 les )

for N > 2, Re(s) > 0. Now let s = 1 + it and choose N = |[t| + 1] to get

N—-1 / 0o
|§(1+it)|§Z%+—+Z 1 /1 —d T \/S|t|/ %daz

n=1 |t‘ n=N 2 N-1
V5 1 \/5 It|
<1l4log(N—-1)4+ — t|—— <1+ loglt —_
< Aloglt|.
(b) Differentiate both sides of functional equation to get
N-1 1—s 1-s 0
—logn N1 —s)logN + N
¢'(s) = + + 2 0u(s)
nz:; ns (1—s)2 Z
where
n+1
, logn logx 1+| |logn
< —
s [ [ e < S0

for large n. Since there exists & > 0 such that |s| < k|¢| for |¢| > 2, and N = [|t| + 1],
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N-1 o)
, logn  |t|log N +1 1+ k|t|logn
i) < e
IC"(1+1t)| < Zs Ty + It +n:N n2

log2 log3 N-1 1 N 1 1
<82, 08 +/ OideJ—F Oil e +—+k|t|/ ngdz
3

log(lt+1) 1 kft|
Lt o — klog([t] — 1)
It] [t -t —

< A(log|t|)?.

(c) In fact, the estimates of zeta function in (a), (b) is also hold for 1 < o < 2 A [¢| > 2. For example,

So |¢(o +it)| < Alog|t| for 1 <o < 2 and [¢| > 2. Note that the condition o < 2 is needed to
guarantee the existence of constant &k such that |s| < k|¢| for all [¢| > 2. Similarly, |[¢' (o + it)| <
A(log|t|)? for [t| > 2.

Now we estimate 1/¢. Since
|C3 Yo +it) (o + 2it)| > 1, whenever o> 1,

we find that

[¢* (o +it)| > c[¢3(o)|(logft) ™! = ¢’(0 —1)* (log]t])~*
foralll <o < 2and |t| > 2. Thus

[C(o +it)] = ¢’ (o — 1) (log|t])~1/*.
We will consider two separate cases. If o — 1 > A(log|t|)~?, then
[C(o +it)| > A’ (log|t])~*"/* (log|t])~'/* = A’ (log]¢])~*

so the inequality is proved. If, however, o — 1 < A(log|t|)~, then we can select ¢/ > o with ¢/ —
= A(log|t|)~". The triangle inequality then implies

[C(o +it)] > |¢(o” +it)| — |¢(o” +it) — ((o + i),
and an application of the mean value theorem,
C(o” +it) = C(o +it)] < c"|o” — o(log|t])* < ¢”|o” — 1|(log]|t])?.
Hence
(o +it)| = ¢/ (0" — 1) (logt)) /% — ¢ (0" — 1) (log]t])?.
We can choose A = (¢’ /(2¢”))* to conclude

(o +it)| > A”|log(t)| 7.

10. (a) Integrate by parts to get

Li(z) /m Lot [ter/” L
i(z) = —dt= | — —
, logt logt], J, (logt)?

Now we show that f ———dt = O( Indeed,

log t)2 (log T )
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1 1 T
§<“5‘2ngm2+<x‘VENbg¢@2:O(@%xv)
Therefore
Li(@) = log O(log:ﬁ)
and
m(z) ~ 1021 ~ Li(z)

(b) Using integration by parts N times,

=] ], 2]+ 0 ]|

* 1
N! ————dt.
+ /2 (logt)N+1

In addition,

/Ildt/ﬁldt+/w N
o (logt)M+170 ) (logt)N+! /= (logt)N+1

1 2N+1 T
< (Vz—2) (log 2)N+1 + (2= Vo) (log ) N+1 = O((logx)N—o—l)'

Therefore the given asymptotic expansion holds for every integer N > 0.

11. We already proved that (iii) = (ii) and (iv) = (iii) in Chapter 7.
(i) = (ii): Note that

pla) _ mla)loga _
T T

(go(x) N am(x®) loga:)

x T

QI

for arbitrary o € (0, 1), thus we get

1 1 1
1< liminfw < limsupw < —.
Z—00 T 200 x 1o
Since « is arbitrary, 7(z) ~ =/ log z.
(i) = (i): Since
alogz(m(x) — w(z®)) < () < m(x)logx
T T T
for arbitrary o € (0, 1), we get
o< liminfM < 1imsupM <1
T—00 xr T—00 T

and p(z) ~ x.

(i) = (iii): Since
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alogx(m(x) — w(x®))

< <
x x x
for arbitrary o € (0, 1), we get
a< liminfM < 1imsupM <1
=00 T T—00 x

and Y(x) ~ x.

(iii) = (iv): Since p(x) ~ x, there exists x, > 0 such that

:c>ac0:>’wix)—1’<5:>(1—6)x<¢(m)<(1+€)x.

Since
bi@) = [ wwdu= A+ [ pudu, where 4= [ wwdu,
1(x /1 (u)du o /950 (u)du, where A, /1 (u)du
we get
2 2 2 2
A0+(1—s)<x2—Z)><z/}1(1:)<AO+(1+a)<x2—?>
and

i_a’j_g _i(% <¢1(a})_1< A _ﬁ+€ _337%
x?/2  x? x? ) T x?/2 —22/2 a? 22 |’

Now taking x large enough implies

¥ ()
—2e < —1<2
e < w22 <
Hence ¢, (x) ~ 22 /2.
12. (a) Since w(x) ~ x/logx,
1 log 1
lim 087(@) +logloge (. log (72 —
z—00 log x az—oo  log(x) x/logx

Therefore log w(x) + loglog x ~ log z.
(b) As a consequence, log w(x) ~ log x since

log () log7(z) + loglog _ loglogz

=1

lim = lim
z—oo  logw T—00 log x log x

Thus

lim x im x/logx logx
1 —_—mm 1 . —
z—oo m(x)logm(x) s-00 w(x) logm(x)

Putz = p,, and m(p,,) = n gives

lim Pn

=1
n—oo nlogn ’

hence p(n) ~ nlogn.
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Chapter 8. Conformal Mappings

1. First suppose holomorphic map f : U — V islocal bijection on U. For any 2, € U, there exists an open
disc D C U centered at 2, such that f : D — f(D) is bijection. Applying Proposition 1.1to f : D —
f(D) gives f’(z) # 0 for all z € D. In particular, f'(z,) # 0.

Now suppose f’(z) # 0 for all z € U. Choose any z, € U and write
f(z) = f(z9) = a(z — z5) + G(z) for all z near z,
with a # 0, and G vanishing to order > 2 at z,. Consider the small disc D centered at z, such that
la(z — z9)| > |G(2)| for all z € OD.

For any w € V, define F(z) = a(z — z,) — w. Observe that |F(z)| > |a(z — zy)| > |G(z)| for all z €
0D and F has at most 1 root in D. Hence f(z) — f(z;) —w = 0 has at most 1 root in D by Rouché’s
theorem, thus f : D — f(D) is bijection.

2. We can write F(2) = (g(2))? because F(z,) = F’(2,) = 0. Since ¢’(z,) = (F”(Z'O))l/2 #+ 0, g is bijec-

tive near z,. Now consider two curves
I : [—=0,8) = C, t= g (1),
L, : [=0,0] = C, t— g (it
for small enough §. Then
Flp, = F(g7'(t)) =t*, Flp, = F(g7"'(it)) = =%,

therefore F restricted to I is real and has a minimum at z;,, while F restricted to I}, is also real but has

maximum at z,. Moreover,

O =1 o). D gay),
t=0

hence two curves are orthogonal at z.

3. Consider any two curves vy, v; : [a,b] — V such that v,(a) = v, (a) and 7,(b) = ~y;(b). Since U and V
are conformally equivalent, there exists conformal map f : U — V. Then two curves defined by

(1) = FH (@), i) =)

lies in U and have common end-points. Since U is simply connected, ) and 7 is homotopic so there
exists 7' (s,¢) : [0,1] X [a,b] — U such that

V0,8) = (1), YV (Lt)=7(@), 7'(s;a)=(a), 7'(s,b)=5(b)

and ~’ is jointly continuousin s € [0,1] and ¢t € [a, b]. Now let v(s,t) = f(v'(s,t)), then « is homotopy
of two curves 7y, and ; because f is holomorphic. Hence V' is simply connected.

4. Define f : D — C as

1—w
) .
1+ w

fw) = (G(w) —4)?, where G(w) =
Note that G : D — H is conformal map. We prove that f is a holomorphic surjection. First suppose z €

R.q. Since /z + i € H, there exists w € D such that G(w) = \/z + i thus z = (G(w) —i)? = f(w).
Otherwise, if z € C — R, then we can define 212 ag
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212 = ¢1/2e19/2 where z=re"?, 0 <6< 2m.

Since 0 < arg(z1/2) < 7, we have 22 + i € H, hence there exists w € I such that G(w) = 224
and z = (G(w) — )% = f(w).

. ObViOuSly, ? is hOlOmOrphiC in upper half-disc. f is injeCtiVe, beCauSe | (Zl) =] (22) lmphes
z z z z z Z9.
1 21 2 Zo 1 2 Z1%9 ! 2

In addition, f is surjective. To see this, choose any w € H. The equation f(z) = w reduces to the
quadratic equation 22 + 2wz + 1 = 0. This equation has two distinct roots in C because w € H. The

product of two zeros is 1, so we call ret?, %e_w for » > 0. Then
1\ . 0 1
r——)sinf =Im(re’¥ + - ) =Im(—2w) <0,
r r

hence r < 1. So there exists z € {z : |2| < 1,Im(z) > 0} such that f(z) = w. Finally, f is a conformal
map by definition.

. Let F(z,y) = a(z,y) + i8(x, y). By Cauchy-Riemann equations,
da 0B  Oa 0B

dr 8y Oy Oz
and Aa = AB = 0. Since

82 (82u6a 8%y 8B>8a Au 82« (82u da azua[ﬁ)aﬁ du 28

92 =\ 9029z T 900 s | ox T 0o "\ Gavpar T op 0z )9z T 9507

0?2 0%u O 0%u 08\ O0a Oud’a 0%u O O*udB\OB Oud?p
ssWweF)=| 5o+t |5t 55+ — tama |l o T 5709
dy 0a? dy  0B0ady | 0y  Oa dy 0adp oy 0B%20y | dy 0B Oy

oa\? [0a\? 9%u (9B0a OB da
Alust) = ((a) + () ) +2505 (9205 * o oy )

ou ou

=0.
7. (a) Ifre’’ = G(iy), then
0 — G(iy) i—e™  §—cosmy —isinmy
re' = G(iy) = — =
4 1+ e™ i+ cosTy +isinTy
(i — cosmy —isinmy)(—i + cosmy —isinmy) . cosmy

(cosy)2 + (1 + siny)?2 “ "1t Ty

0\ 2 ; . .
Furthermore, (ele) =210 = 1 implies that

cos? y 1—sin?7y 1 —sinmy

2 = = =
B (1+sinmy)?2  (1+sinmy)? 1+sin7y’

—2i0 2

r €

and
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1—7r? 2siny sin 7y
P.(0—yp) = = = for 0 = /2
H0=9) 1—2rsinp+1r2  2—2(1+sinmy)rsing 1 —coswysine o /2

2 y y
F(6—v)= 1+ 2i sinrga T2 2t 2(1 ib;?nﬂfy)r sin ¢ T1- cb(;::;singa for 6 = —m/2.
(b) Since
e = z;:: = _(:;r;_—:)f = sinp = Im(e'?) = secht,
cos ¢ = 4 tanh 7t. Observe that
0<p<7m/2: cosp>0,t<0,tanh7t <0,
T/2<@p<m: cosp <0,t>0,tanh 7t > 0.
Therefore cos ¢ = — tanh 7t and dy/dt = 7sech 7t. Hence
o | BO— o= o [ 20
2 J, 27 J, 1—cosmysing
- Slg:y /OO 1— cogjr(;)sech ﬂtﬂseCh mtdt

_ sin 7y /°° fol®)

2 cosh 7t — cos my
—0o0

(c) Now substitute t = F'(e’¥) — i, then sin p = —sech 7t and d/dt = — cosh wt. Therefore

1 [ - 1 [ sin my =
— | PO-— dp=— | ——=2_F(p)d
(0= @) fol)de = o /w 1_Coswysiwf1(<p) @

—T —

_ sin y /700 f1(®)

2w 1 — cos my(— sech 7t)

(—msechrt)dt

_ sin y /°° f1(®)

2 oo Cosh 7t + cosTy

8. The conformal maps indicated in Figure 11 are

z—1 1 s
R(z) = By(z) =logz, B() =2~ 2.

PEE Fy(z) =sinz, F(z) =z—1.

Observe that arg(z) /7 is harmonic on the upper half-plane, equals 0 on the positive real axis, and 1 on
the negative real axis. Thus the harmonic function

1
u=F o B e Bl Bt o Bte (21 —ang(s))
Vs

satisfies the given condition.

9. Since f(z) = (i + 2)/(i — z) is holomorphic in D, v = Re(f) is harmonic in unit disc. Furthermore,

w(o,q) = Re(l: + z) _ Re(f;:%ty;)) _ ;erﬁ — z;

i—z
thus u vanishes on its boundary.
10. Recall the conformal map between D and H, F*(z) = ;—i and G(w) = ii=2. Define function

14w
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FiD=C, fw) = F(Gw)) :F(Z;Z}’)

Since | f(w)] < 1forall w € D and f(0) = F(i) = 0, by Schwarz lemma,
|f(w)| < |w| for all w € D.

Now substitute w = F™*(z) to get

)| = ()] < |F ()] = | =

Z‘ for all z € H.
7

11. Defineg:D — Dandh:D — Das

_ ' ipw w) = 9w —9(0)
g(w) = 77 f(Rw),  h(w) e

Since h(0) = 0, by Schwarz lemma, |h(w)| < |w| for all w € D. Letting z = Rw gives

:M’ f(2) = £(0)
M2 = T(0)/(2)

Izl
B

g(w) —g(0)

S <
1—g(0)g(w)

Therefore given inequality holds.

12. (a) Defineg: D — Dasg =, o for),. Lety =41 (B) € D — {0}, then
9(0) = ¥ (f(14(0))) = v (f(@) = ¥5' (@) = 0,
9(7) = ¥ (F(a (1)) = ¥a ' (F(8)) = ¥5' (B) = -

Hence g is identity by Schwarz lemma. Therefore f = 1), o g o ¢! = 1, o idp o 9! = idp,.
(b) No. Consider the function f : D — ID defined as

f=Fo(z=2+1)cG,

where F(z) = é;—j, G(w) = 1(11:;}) is conformal map between D and H. Then f does not have fixed

point. Otherwise, it has fixed point w, then
F(Gw)+1)=w = Gw)+1=_G(w),

which is contradiction.

13. (a) Consider the function g = 1), o f © ¢,'. Since g : D — D and g(0) = 0, [g(2)| < |2| forall z € D
by Schwarz lemma. Hence

|(V5w) o Fov" ) (@) <12l = [($ra © F) (2
= p(f(2), f(w)) < p(z,w) for all z,w € D.

IA
<
g

O

(b) Since
f(z) = f(w) z—w fEfw) 1
1—f(w)f(z)| ~ 11 —wz 1= flw)f(z)| ~ N —w2|’
taking the limit w — z gives
1/ (2)] 1

T 1f () S T2
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14.

15.

Note that F(z) = =% and G(w) = i17%
map from H to D. Then w — f(G(w)) is conformal map from I to D. Hence there exists § € Rand « €
D such that

is conformal map between D and H. Suppose f is conformal

_ g & w
F(Gw) =
Now choose z = G(w) then
L a—F ga—== Dz +i(a—1 97—
Flz) = e 22 (2) — it 2 — Ze“’@—'— )z—i—z.(a jzewz 5
1—aF(z) l—aZ (@+1)z+i(l—a) z—f
where § = Zm =G(a) € H.

(a) Since ® is an automorphism of H, there exists a, b, ¢, d such that ®(z) = (az + b)/(cz + d). Then
the equation

az+b
cz+d

=z = c2?+(d—a)z2—b=0

has three distinct real roots, so ¢ = d — a = b = 0. Therefore ®(2) = az/d = z, which is identity.

(b) Observe that the equation y = Zjis < cyx —ax + dy — b = 0 is hyperbola. Since this function

passes through the (xj, yj), this equation is equivalent to

zy x y 1
Ty vy Yy 1 -0
TolYy Ty Yo 1 .
T3y T3 Y3 1

by means of a Laplace expansion along the first row, we get
a=1Y1 (Y2 — Ys3) + T2Y2 (Y3 — y1) + 23Y5(¥1 — ¥2),
b= 21y; (ToY3 — T3Y2) + To¥a T3y — T1Y3) + T3y3(T1Y2 — Ta¥1),
c =y (x5 — T9) + Yo7 — 73) + ys3(2 — 79),
d = 21y1 (29 — T3) + TaYe (T3 — 1) + T3Y5(71 — 7).

Note that ad — be = (x; — ) (x) — 23) (22 — 23)(y1 — ¥2) (Y1 — Y3)(y2 — y3) > 0. Therefore

(a b’) _ 1 (a b)
cd') \/(371 —xy) (1 — @3) (T3 — 23) (Y1 — Y2) (Y1 — ¥s3) (Y2 — ys) \€ d
satisfies the condition a’d” — b’¢’ =1, so there exists (a unique) automorphism ® of H so that
®(z;) = yj-
Evenif y; < y; <y 0ry, < ys < Yo,
(21 — @) (21 — 23)(wy — @3) (Y1 — Y2) (Y1 — Y3) (2 — y3) > 0,

therefore the conclusion is the same.

16. (a) Givenf € R,

1* efizz B i(l + ew)z— (1 — ew)

—1/ 0 _ i+z
JHE @) =i 0=z~ (T —ei)z +i(1+e)
B eie/zgeﬂe/zz + eimgfﬂ.mz _ cos(6/2)z + sin(6/2)
_e"e/?;’“’/z 2+ eie/z*—;’”“ ~ —sin(6/2)z + cos(0/2)"
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Hence

(28) = (Coilor) wiera))

(b) Given o = r +is € D, then

i—z
R
itz
and
W, (f(2) = z’l _ Ei{o}ggz—j}g _ i(a_ Oz)Zi- 2—a-— ?)z _ sz (1— 7")'
I+ == C+tata)z+(a—a)i (I+r)z—s
Therefore

ab\ 1 s —(1—=7)
cd)  J1—|ap\1+7r —s ’
(c) By Theorem 2.2, there exist § € R, a € D such that g(z) = €1, (2). Apply (a), (b), then
flogef=fTlo(zme2)otpgof=(fTo(ze2)of)o(fothyof)
:(z|—>alz+bl>o(z»—>azz+b2>:(z»—>az+b>

c1z+d; o2+ d,

cz+d

where ad — bc = 1.

17. We change the variable w =

Yo (2)-

//WJ Pdady = ~ //w N d:cdy_//mdxdy:L

Since

1—|af? coa - L= laf
A—az)? = |¢a(2>\—m,

Ya(z) =

the second integral is

Oé|2/ /27T 1
/|’(/J |dxdy ] Taren ——rdfdr.

(1 —are=?)
Using residue formula for f(z) = 1/(1 — arz)(1 — az),

1 2m 1 1 2m 1
/0 /0 (lozrew)(lozrew)rdedr:/o " /0 (1 —are?)

(1 — are=i) d€> dr
- /01 " (/8D i(1— arzl)(z — ar) dz) dr

! 1 wr
—/07"<2m‘~1~1>dr—/0 2

1—ar-ar 1—|al?r?

dt

VO
T o Bl

Hence
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18. Remember that in the proof of Theorem 4.2, the key geometric property of the unit disc and polygonal
region is that if z, belongs to the boundary of €2, and C' is any small circle centered at z,, then C' N 2

consists of an arc. Note that piecewise-smooth closed curve «y also has this property because
2(t) = z(to) + 2" (to) (t — o) + o(|t — L)

at any point z, = z(t,) on . Therefore we can generalize Theorem 4.2 to the piecewise-smooth closed

curve.

19. Suppose any two curves vy, 7; : [0,1] = ClyinginQ = C — Up_; {A; + 14y : y < 0} and write v,;(2) =
7;(2) + is;(2). First, we show that for every small ¢ > 0, there exists A; such that

s;(t)+ At(1—1) <0 = |r;(t) —r(0)| <eor |r;(t) —r(1)]| <e.

Since r; is continuous, there exists § > 0 such that

t<dort>1—6 = |r;t)—r(0)| <eor|rt)—r(1)] <e.

Now let A; = sup{fsj(t)}/(é(l —0)). Then

§<t<1-0 = —s,(t) SAS(1—08) < At(1—t) = s;(t)+At(1—1t) >0.

Hence the desired proof is obtained.

Let A = max{A,, A, } and define v} (t) = 7;(t) + iAt(1 —t) (j = 0, 1). Note that 7, and ~5 are homo-
topic, y; and ] are homotopic. Since both +j and ] are contained in ¥’ = HU {z € C : |Re(z) —
r(0)| < e or |Re(z) —r(1)] < €}, and ©’ is simply connected by Problem 4, Chapter 3, 7 and ~7 are
homotopic. Therefore v, and ; are homotopic, and conclude that €2 is simply connected.

20. (a) If A # 0, 1, then the integral is equal to

/0 CHR(C=D2(C = A2

which is Schwarz-Christoffel integral with 8, = 8, = 3 = 1/2. Since ) 3, = 3/2, By Proposi-
tion 4.1, this function maps the upper-half plane conformally to a rectangle. Moreover, the angle of
the vertices is aym™ = aym™ = agm = a,m = 7/2, so the image is rectangle.
Note. In the case of A = 0, the integral diverges and the definition does not seem to be valid.

(b) Since the image is a rectangle, the lengths of the two opposite sides are equal. The lengths of the two

adjacent sides are

R LRl =t

respectively, and we can see that they are equal through changing the variables u = 1/z. Hence the
image is a square. Furthermore, changing the variables 22 = t, the side length is

1 71/2 1 dt 1 1
/ e 2(1—2%) Fdx = / e e f/ 341 —t) Y24t
0

0 0 2t1/2 2
— 13(1 1) _IT(1/4)0(1/2)  1T2(1/4)  T*(1/4)

27\4’2) "2 T(B/4) 2 Vor 22r
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21. (a) This is Schwarz-Christoffel integral with 1 < 5 + 5 < 2, it maps H to a triangle whose vertices
are the images of 0, 1, oo, and with angles a7, aym, agm with a; + 8; = 1 and ) + B, + 85 = 2.
(b) The images of the two intervals (—o0, 0], [1, 00) become parallel.

(c) The images of the two intervals (—oo, 0], [1, 0o] diverge in opposite directions.

az ag az Qg

Image when 8, + 8, =1 Image when 0 < 3, 4+ 85 < 1
(d) Let!; be the length of the side of the triangle opposite angle a;m. Then

1
ly = / a1 (1 —2)Pede = B(1 — 81,1 — B,) = Bloy, o)
0

o Iy )T (ay) o (o )T (ary) o sin(azm)
- F(Oél +a2) - I‘(l—a3) - 7r3 F(al)r(a2>r(a3>?

[e’e) 1

l, = P (x —1)Pedr = | tHHP22(1 — ) Pedt = B(By + By — 1,1 — f35)

1 1 2 2
1 0

B ~ T(ay)T(az)  T'(ay)(ag)  sin(oym) B
= Blag, ay) = F(ozz —|—a§) = F(12— ozli; = . [(ap)l(ay)l(ag) (t=1/z),

0 1
b= [ (o)) Pade = [0 = BB, 4By - 11 )
- 0

oo

Plag)l(ay)  T(ag)l(ey)  sin(agm)

1
= Blag, o) = po o = e = P )P0y )T (o) (t=—5):

22. Let F(z) = Z—i and G(w) = Zﬁ
conformal from H to P. We first suppose that I’ did not map the point at z = —1 to a vertex of P. Then

which are conformal map between H and D. Then G = F o F is

by Theorem 4.6, we can represent GG as

o[ ¢
“o- / (€= A" (8= A,)™

Therefore change the variables £ = F(() to get

+ 5.

;1—z

Tz dC
F(z) =G(G(z)) = 01/0 (C—A) o (B—A4,)"

+ ¢y

z _9; 1 _ z
_ 2t o dg
= A 1-¢ B1 1 ¢ Bn T=0a B B1 B Bn T2
1 (lm_Al) (Zm—An> 1 (6_ 1) (5_ n)

where B; = F(Aj).

If there is a vertex of P such that corresponding to —1 € D with F', then this point corresponds to oo
for G. Hence by Theorem 4.7, we can represent G as
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Similar to above,

where B = IE‘(A ) and A,

23. By Exercise 22, F' maps the unit disc conformally onto the interior of a polydon with n sides. The side
lengths are
2m(k+1)i/n

e27( dC 27(k+1)/n et 2w /n Z‘ei(<p+27rk/n)
[ =l =] . s
e2mki/n (1 — C”) 27k/n (]_ _ ezn@) 0 (1 _ ezn(gp+27rk/n)>
) 27t /n ip
_ Z'627rkz/n/ 6- = d(p ,
0 (1 _ ezngp) /n

respectively, and they are all the same. Therefore the image is regular polygon. The perimeter is

27/n i ™ 2i0/n ) -\ 2/n T 1
/ e / — a9 =2|(3) / —
0 (1 _ ezngo) /n 0 1 — e(200)2/ 2 0 (619_6 19) /n

21
:2"52/ (sin 0)~2/d.
0

n =N

—-1/2

24. (a) We change variables z = (1 — k2 y?) in the integral defining K’ (k), then

K'(k) = " . / Py
o VED0-RE Ty kkﬁky ’

1
1 -
= = dy = K(k).
b O
(b) Change variables z = 2t/(1 + k + (1 — k)t?), then

/\/1w2 k2x2)dx
:/ 1 .2((1+l~4)7(1—l})t2)dt
0 i : 1+k)+ (1

dt
=) ((1+F) = (1-F)’e)

:2/0\/

2 ! d 2 1—k
:1+15/0 \/(1_t2)<1t_ )t2>1+léK<1+lé>'

grz

(c) Using the integral representation for F' given in Exercise 9, Chapter 6,
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K(k) = /1 (1 x2)71/2<1 _ k%z)fl/zdm _ /1 (1 k:2t)1/226\l2
0 0
1 -1
21— )2 (1 — ) = ) F(1/2,1/2,1; K
/0 (=87 ) > <F(1/2)F(1 - 1/2)) (1/2,1/2,1; 1)

N N

F(1/2,1/2,1;k2).

Chapter 9. An Introduction to Elliptic Functions

1. (a) First suppose that f is periodic with the simple period w, = %wl. Since w; = quw, and wy = %wl =
pw, where p, g are integers, f has two periods w; and w,,.

Now suppose f has two periods w; and w, where w,/w,; = p/q. Then there exists integers m and

n such that mq + np = 1. Hence
f(z+wy) = f(z+ (mg+ np)wy) = f(z+ mw, +nw,) = f(2),

which means that f is periodic with simple period w, = %wl.

(b) Let 7 = wy/w;. Note that {m — nr},, .5 is dense in R since 7 is irrational. Hence
{zeC: f(z) = f(0)}

has subsequence of distinct points with limit point 0. By Corollary 4.9, Chapter 2, f(z) = 0 for all
zeC

2. Suppose that the boundary of the parallelogram contains no zeros or poles. Using the periodicity of f,

SE) R, R EE, L [ @, AR,
on 1) 2= [ +/wl BN */Wz [ER AT

B P L P N R A C P e
‘/0 e ¢ +/0 ER */wl CIR AP

= /0% J;/<(ZZ>) de g /Owl J;g)) o

Observe that if f has zero of order n at 2, then

[(z) n zf'(z)  nz
o) " amz O T R Tamg, POV
otherwise f has pole of order n at 7, then
f'(z) n zf'(z) . nz
fo) = ama W = gy T i, )

Therefore

2f(2) z =2m T a; — T .
[, i =S - $2n)

Meanwhile, the integral of f'(z)/f(z) over a side is an integer multiple of 27. To see this, write f(z) =
7(2)e?® for r(z) > 0 and continuous 6(z). Then
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/0“’ ];((j))dz—/ow e tire? /Ow (ij—kie’)dz— log ()] + i1 = i(6(w) — 6(0)),

ret?

where f(0) = f(w) implies ¢?®)=0©) = 1 and i(§(w) — 6(0)) = 27i - m for m € Z. Therefore

T T /
2mi E a;— Z by | = Z]J:<(§> dz = 2mi(nw; +mw,), where n,m € Z.
=0 =0 o, J\*

If there are zeros or poles on the side of the parallelogram, we can translate it by a small amount to
reduce the problem to the first case.

3. Since [n + m7|? ~ (|n| + |m|)? ~ n? + m?, it’s enough to prove Y 1/(n? + m?) = co. Note that

1 4 ! 4 !
2wyt 2 att X e
1<nZ+m?2<R? 1<n<R n2+m2<R2

1<n,m

First term is obviously O(1). Moreover,
n2+m2<R?

1 7\'/2 R]. T
— < —rdrdd = —log R
n2+m2_/0 /0 2 g 0B
1<n,m

1 Tl'/2 R 1
_—> drdf
Z n? + m? _/0 /0 (TC089—1)2+<TSin9—1>2T "

n2+m2<R?
1<n,m
©/2 prR
> / / rdrdﬁ
0
- glog VR 2 glogZ > glogR+0(1).
Hence
1/(n? +m?) =2rlog R+ O(1) as R — o
1<n?2+m?2<R?

and the given series does not converge.

4. For R sufficiently large,

o(z) —pf(z) = > {(erlw)Q_qj?] => O(|w13> :O</1%m;rdr> :O(%).

|lw|>R

Hence p(2) = pf(2) + O(1/R). Next,

@R(z+1)—p3()— st D {z—i—l—kw) _@H_le_ > [(erlzu)?_zH

0<|w|<R

1 1 1
- _ _ __0 -
og\wz—;\gR (2 +w)? OS\;\SR (2 +w)? (R—1<%<R+1 w|2>

1 1
O( R?) B O(E)'
Similarly, p(z + 7) = p(2) + O(1/R). Therefore for any w € A,
p(z+w) =p(z) + O(1/R).
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Taking the limit R — oo gives p(z + w) = p(z).
5. (a) First prove that o(z) is the entire function of order 2. That is, we will show that

[IlE2<Z/Tj>

< ecldl’®

for any s with 2 < s < 3. This proof is similar to the proof of Lemma 5.3, Chapter 5. We write
HEQ(Z/Tj) = H EQ(Z/Tj) H EQ(Z/Tj).
Jj=1 |7]<2lz| |75]>2]z]

For the second product,

. -3
H Ez(Z/Tj) = H |E2(Z/Tj)| < H eclzimil® — ec‘z‘gz\*j‘”‘z‘ el )
‘Tj‘>2\z\ ‘Tj‘>2\z\ ‘Tj‘>2‘2|
But |7;| > 2|z| and s < 3, so we have

’—3 | s—3

117 = |7l T < Ol T

Therefore, the fact that Y |7,,| " converges implies that
H EQ(Z/TJ-) <ecl”,
‘Tj‘>2|2|

Now estimate the first product.

z 2
H E2<Z/Tj) = 1— = eclz/ml",
. -
|‘r]-|§2|z| |‘rj|§2\z\ J ‘Tj‘§2\z\
. -2 -5 5—2 —8| _|s—2
Since |7;| " = |7;| T|7;|T T < C|7;| 7|2]*72, therefore
5 —2
eC‘Z/Tj‘z _ ec‘z‘ Z‘Tj‘SZ‘z‘ ‘TJ" < eC‘Z|S.
|'r]»‘§2|z|

Moreover, Letting 7" = min{1, |7|} gives

< H <1+
|7;|<2lz|

2|z|) log(1 / log(1 / s
= en(zDlog(1+]=l/7) < eelzl”log(1+[=l/7) < eelzl®

L2 z

T. T.
|75|<2lz| ’ ’

where 2 < p < s. Hence o(z) is entire function of order 2. By Hadamard’s factorization theorem,
any function f of order 2 and has simples zeros at {n + m7} is equal to e”’*)g(2), where P(2)
is polynomial of degree < 2. Therefore o(z) also have simple zeros at all the periods n + mr, and
vanishes nowhere else.

(b) By Lemma 4.2, Chapter 5,

() 1 1 E3(z/7; 1 1 1 =z
oz _ 1, —72</]>:*+ l ++2]
o2) 2 aTen T E(ET) 2 SR FTT T T
1 1 1 z
:;—'— [znm7+n+m7+(n+m7)2]'
(n,m)+#(0,0)
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(c) Also by Lemma 4.2, Chapter 5,

V() — _(o{;’((;)) _ <o’<z>>(zgzzo>')<2z>o”<z>
B zt*(nm;w[(z_nl—m)? - (n+1mr ] +w§[ (z 4 w)? _wl?] e

6. Recall that (p’)* = 4p® — gy — g5, where g, = 60E, and g, = 140E. Differentiate both sides then

’. N

207" = 120%0" — g9’ = p” =06p? — gy /2.

Hence p” is a quadratic polynomial in p.

7. Setting T = 1/2 in the expression

> 1 w2

Z (m+ 7)2 - sin?(7T)

m=—0o0

gives

1 5 1 w2 1 ™
—— =7 = — — =
mzez(erl/Q) i szﬂ) 4 D

mEZ m>1,m odd m

Since

1 1 3 1
S T w iEwilw

m>1,m odd

deduce that

Moreover, differentiating both sides of expression above twice then

6 Z ﬁ =27t esc?(77) (1 + 3tan?(n7)).

m=—0o0

Set 7 = 1/2 to get

1 4 4 1 T
Z(m—i—l/Q i3 7 mz: 2m—|—1 BT Z mt 96

meZ m>1,m odd

and

1 16 7* 7
D A= T5 56~ 00~ oW

m>1

8. (a) Putting k = 4 to Theorem 2.5,

T 4. > .
By(r) = 20(4) + 220§ g (e

where 2((4) = 7% /45. Let T = x + it, then
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] o) o) 4 6#(4/37215)

2miTr < 4 —2mrt < 3T =27t
§103<T)6 < Elre < Ele e 1—e”<4/3—2t>%0
r= r= r=

TSZTSZT"‘lSegrv r>0
3 3
(b) By (a),
7T4 16 4 - 2miTr 16 4 647"/3 —2mt
‘E4(7') — =37 ;%(r)e < B en2t-4/3) ¢
16 , AT ce—2t
=3 1— 6—277/3 ’

whenever ¢ > 1.
(c) Since E, (1) = 7 *E,(—1/7) (Theorem 2.1) and Im(—1/7) = 1/t > 1,

4
4B (—1/7) — 74—

4
T
’E4(7'> —rt— 15

mt 4,27/t
45‘ = E,(—-1/7)— 45‘ < thee 21,

The last inequality is held by (b).

Chapter 10. Applications of Theta Functions

1. Observe that F'(z) = ((@’)2 — @@”)/@2 and p_(z —1/2 — 7/2) have same property; they are both
elliptic function of order 2 with periods 1 and 7, and with a double pole at z =1/2 4+ 7/2 + n + mr.
Moreover, the principal part of two functions are same as 1/(z — z,)” at each pole z, = 1/2 + 7/2 +
n 4+ m7. By Liouville’s theorem, F'(2) — p, (2 — 1/2 — 7/2) is constant, thus

Fz)=p.(2—1/2—=7/2) +¢,.

Now we calculate c_. Note that

1
p(z—2) = ——— +0+3E, (2 — )" + -~
(2= 2)

Since O(2|7) = ©’(29|7) (2 — 29) + 20" (2|7) (2 — 20)* + $0” (20| 7) (2 — 29)° + -+, we get

©'(z7) L 64 +6§(z—2) + 367 (= — 2)” + -

O(:IT) 2= 2064+ 164 (= — 20) + 46§/ (= — 20)° +

1 e 167 1/6f)? 2
— 1 _ Z _ | =0 —
z—z0< LA (3 o ileg) | )

where @(gk) = 0" (2,|7). Hence

ro=-(58) -2 (X - 4(E) )+

10 7\ 2
c,=—2 0 —&-1 @—0 .
30, T1\9;

and

Note. It is unclear whether c_ can be expressed in terms of the first two derivatives of ©(z|7).
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2. (a) Since F,, < 2" for alln > 0, F(x) converges absolutely near 0. Observe that

F(x) —2*F(x) —2F(z) —x

00
n=2

Hence F(x) = 22F(x) + 2 F(x) + « for all z in a neighborhood of 0.
(b) g(z)=1—2—2%=(1—az)(1 — fz) where o, 3 = (1 + \/5)/2
(c) By simple calculation,

. 11 11
FO) = A=) a—Bl-az  B—al—fps

(d) In the neighborhood of 0,

n:F — — ATL B”L ’ﬂ.
DRt = Fla) = 15 g = Y (At B

Hence F,, = Aa™ + Bf" for alln > 0.

3. We will briefly touch on the solution for the case where o = 3. If so,

7“0*(“1*‘“40)937 A Ba _ - non - n+l,.n
Ulw) = (1 — ax)? _1—ax+(1—a$)2_AZ_;)az —I—BZ;J(n—&—l)a*:c.
Therefore
u, = Aa™ + B(n + 1)a™™! = A’a™ + B'na™
foralln > 0.
4. Note that
k(3k+1
s = S (o ML)
0<k(3k+1)/2<n
k(3k+1
& 0= Z (—1)k+1p (n — 7(3 2+ )>
0<k(3k+1)/2<n
Since
> = 1 = i k(3k+1)
> pme =Ili—p Tl0—em= >t
n=0 k=1 n=1 k=—o00
we have

() () £ ()

j=1 n=1 k=—oc0 7
_ Z (—l)k ( Z » <n _ k(?)k + 1) ) zﬂk(ﬁgﬂ)) zk(3§+1]
2
k=—o0 n=k(3k+1)/2
> k(3k+1
o S )
n=0 \0<k(3k+1)/2<n

whenever |z| < 1. Therefore
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foralln > 1.

. Observe that

log F(z) =3 1 - Sgm =N 2T
Since ma™ (1 —z)<1—a2m <m(l—x)for0 <z <1,
1 s a™ oz
— <logF(z) < —
1—:52_: 7 SlogFl@) < oy
m=1
Applying Abel’s theorem,
— 1 . 1 T
I D La = 2T
0<z<1m=l1 m=1
So by the sandwich theorem
) log F'(x)
ool 12/(6(1—1))
0%a<1

. Since log F(z) ~¢/(1 —xz)asz — 1, we havelog F(e7¥) ~ ¢/(1 — e ¥)asy — 0. Also, cy/(1 — e™¥)
is bounded near y = 0, so we know
cy c

<A = <
1—ev 1—ev

< |

Hence We get F(e™¥) =3 p(n)e ™ < Ce®/¥, and p(n)e ™ < ce®/¥. Take y = 1/n"/? to get p(n) <

¢’ ™" In the opposite direction, first see that cy/(1 — e ¥) > A’ > O near y = 0, so
pp Y Y
A/
Y s £ 2

1—e¥ 1—e¥ Y

This leads to inequality
o0 m oo
Cet/¥ < F(e™¥) = n)e " < ne "W+ C ecn'Zemmy,
< p = p
n=0 n=0 n=m+1

Takey = Am~Y? where Aisa large constant. we have ent/? — Am~Y2p < —%Am’lmn forn >m +
1, thus

—1Am Y2 (m+1)

0o 0o e
172 _ —-1/2 1 —1/2
e e Am n < e 5Am n _ — O(l)
1 7%Am*1/2
n=m+1 n=m+1 —¢€

Moreover, the sequence p(m) is increasing,

S (e < plm) 3 e < plm)’ = 2 mpom).
n=0 n=0 Yy

Summarizing all the inequalities so far, we finally have

1/2

K (&3
eV L O(1) > ™",
m

p(m) >
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7. (a)

(b)

8. (a)

(b)

(©

9. (a)
(b)

(©

Let z = 2™ ¢ = €™, 2 = /2. Then

H(l +2")(1 — 22" F2) = H(l —z")(142")(1+ 2™ 1)
n=0 n=1

I
8

(1_q2n)(1+q2n 1 2wlz)<1+q2n 16—27rzz>

3

3
Il
—

By Theorem 1.3 the product equals

o0 o0

. o . n(n+1)/
E emin ue27mn(u/2) _ E (627rzu E JZ" (n+1)/

n=—oo n=—oo n=—oo
Let z = 2™ ¢ = ™ 2z = 1/2 + 3u/2. Then

o0

H<1 _ x5n+1)(1 _ x5n+4)( 5n+5

n=0

’,:18

1—$ 1_$5n—4)(1_x5n—1)

10_0[ 1— q 1 + q2n71€2ﬂ'iz)(1 + q2n716727m'z).

By Theorem 1.3 the product equals

Z eﬂ'in25u627rin(1/2+3u/2): Z (7 )n(€2ﬂ'iu)”<5”+3)/2: Z (71)nxn(5n+d)/2

n=—oo n=—0oo n=—oo

—_

If both a and b are even, then it is contradiction with the fact that a and b have no common factors.

If both @ and b are odd, then ¢2 = (mod 4), which is impossible.

2

Assume ¢ is odd and b even, and write b2 = ¢2 — a2. Then ¢ — a and ¢ + a are both even, so

b 2_<c—a>(c+a)
2) \ 2 2 )
Note that (¢ — a)/2 and (¢ + a)/2 are coprime. Otherwise, g > 1 divides (¢ — a)/2 and (¢ + a)/2,

cta _ c—
2 2’

integer n, m such that (¢ — a)/2 = n?, (c + a)/2 = m?. then

which is contradiction. Therefore there exists

and a =

then ¢ divides ¢ = HTG + <2

a=m?—n? b=2mn, c=m?+n>

2 2

If c = m? + n? for some integers m, n, then letting a = m? — n? and b = 2mn to get a? + b2 = c2.

Since d, (p) = 2 and d5(p) = 0, r5(p) = 4(2—0) = 8.

¢® has a + 1 divisors, which are 1, ¢, ¢%, -+, ¢*, and the remainders modulo 4 is 1, 3, 1, 3, ---. Hence

r9(q%) = 4((% + 1) — g) > 0, when a is even, and

“ a+1l a+1
rlet) = 4(“5= -

2 2

Note that if ¢ is prime of the form 4k + 3 and ¢ | a® + b? then ¢ | a and ¢ | b. Otherwise, if q | a,
then 1 + (a‘lb)2 =0(modg) and 1 = (%) = (—1)"" = —1, which is contradiction.

) =0, when a is odd.

Suppose n can be represented as the sum of two squares, n = a? + b2. If there is prime ¢ | n of
the form 4k + 3, then ¢ | a, b implies that ¢® | a® + b? = n. Therefore (n/q)? = (a/q)* + (b/q)?

Repeating this process, we can see that every prime ¢ = 4k + 3 occur with even exponents.

Now suppose all the primes of the form 4k + 3 that arise in the prime decomposition of n occur with
even exponents. Observe that
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2=12+12,
p=a?+b% where p is prime of the form 4k + 1 (by (a)),
p? = p? + 0%, where p is prime of the form 4k 4+ 3.

Since n is product of numbers above, and (a? + b?)(c? + d?) = (ac — bd)? + (ad + bc)?, n is also
sum of two squares.

10. (a) If q is prime of the form 4k + 3 and a is odd, then r,(¢%) = 0. Meanwhile, n = 5* then r,(n) =
4(dy (5%) — dg(5%)) = 4(k + 1 — 0) = 4k + 4, hence lim sup,,_,,, 75(n) = <.
(b) Ifn = 2%, thenr,(n) = 80*(n) = 8(1 + 2) = 24. Now define n;, = (p,py - py )", where p; denotes
j-th prime. Then

hence lim sup,, , . 74(n)/n = oo

11. Since z/(1—2) =Y. 2",

n=1

o0 o0 o0 o0 o0
Zl — anZz”m:Zanzk:Zq(k)zk.
n= -z n=1 m=1 k=1 n|k k=1

12. (a) For|¢| < 1,

(b) Note that

. oy(n) if n is not divisible by 4,
oi(n) =19 !
! o,(n) —4o,(n/4) if n is divisible by 4.
Therefore
_ - _4
NN e Ve
= n
= Z%(”)fln - 4201 (Z)q”
n=1 4|n
oo
=> oi(n)g".
n=1

(c) Left hand side is equal to ZZO: 0 r,(n)q"™. Observe that right hand side is

[e%s) qn _ 00 qn e q2n B q2n
; (1+ (=1)ngn)® 2 (1—qm)? +z:1<( ’ 2>

a\(L+¢2)”  (1—¢*)

n o0 4n

Tl 2 (1 — g4n)2
n:l(l_q) n:l(l_q4)

|
M]3
[l
S
=)

Hence the identity is equivalent to
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> rn)gt =148 oi(n)g",
n=0

which is also equivalent to four-squares theorem r,(n)
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