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Preface
Seoul National University’s “Complex Function Theory” course uses “Stein’s Complex Analysis” as a textbook.
However, I’ve seen many students struggle with their studies because it’s difficult to find solutions to most
problems. I’m sharing my solutions in the hopes that they will be helpful.

This solution includes all Exercises for each chapter. It doesn’t contain solutions to the Problems.

This file is uploaded to https://geniuslhs.com/solutions/stein-complex-analysis.pdf. I recommend checking it
regularly, as it may be updated.

The solutions may contain mathematical errors, so we recommend reading them critically. If you find any math-
ematical errors or typos, please report them to qwerty12021@snu.ac.kr. Thank you for your valuable feedback.

History
• [2025.07.29.] First release.

Chapter 1. Preliminaries to Complex Analysis

1. (a)

𝑧1 𝑧2

(b) 1/𝑧 = 𝑧 ⟺  𝑧𝑧 = 1 ⟺  |𝑧| = 1

1

(c)

3

(d)

𝑐

1
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(e) The mapping 𝑧 ↦ 𝑎𝑧 is a linear transformation, and mapping 𝑧 ↦ 𝑧 + 𝑏 is a translation.

(f) Let 𝑧 = 𝑥 + 𝑖𝑦, then |𝑧| = Re(𝑧) + 1 ⟺  √𝑥2 + 𝑦2 = 𝑥 + 1 ⟺  𝑥2 + 𝑦2 = 𝑥2 + 2𝑥 + 1 ⟺
 𝑦2 = 2𝑥 + 1

−1/2

(g)

𝑐

2. Let 𝑧 = 𝑥1 + 𝑖𝑦1, 𝑤 = 𝑥2 + 𝑖𝑦2. Then

⟨𝑧, 𝑤⟩ = 𝑥1𝑥2 + 𝑦1𝑦2

and

𝑧𝑤 = (𝑥1 + 𝑖𝑦1)(𝑥2 − 𝑖𝑦2) = 𝑥1𝑥2 + 𝑦1𝑦2 + 𝑖(𝑥2𝑦1 − 𝑥1𝑦2).

Hence

1
2
[(𝑧, 𝑤) + (𝑤, 𝑧)] = 1

2
[(𝑧, 𝑤) + (𝑤, 𝑧)] = Re(𝑧, 𝑤) = ⟨𝑧, 𝑤⟩.

3. Suppose 𝑧 = 𝑟𝑒𝑖𝜃 satisfies the equation 𝑧𝑛 = 𝑤. Then

𝑟𝑛𝑒𝑖𝑛𝜃 = 𝑠𝑒𝑖𝜑 ⇒  𝑟𝑛 = 𝑠 ∧  𝑒𝑖𝑛𝜃 = 𝑒𝑖𝜑.

Since 0 ≤ 𝜃 < 2𝜋, We get 0 ≤ 𝑛𝜃 < 2𝑛𝜋 and 𝑛𝜃 = 𝜑 + 2𝑘𝜋 (0 ≤ 𝑘 < 𝑛). Therefore there exists 𝑛
solutions;
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𝑧 = 𝑠 1
𝑛 𝑒𝑖(𝜑

𝑛+2 𝑘
𝑛𝜋) (0 ≤ 𝑘 < 𝑛).

4. Suppose it is possible to define a total ordering on ℂ. by (i), one and only of the following is true;

𝑖 ≻ 0, 0 ≻ 𝑖, or 𝑖 = 0.

In the first case, use property (iii) twice to get the following

𝑖 ⋅ 𝑖 ⋅ 𝑖 ≻ 0 ⋅ 0 ⋅ 0 

so that −𝑖 ≻ 0. Use property (ii) to get −𝑖 + 𝑖 ≻ 0 + 𝑖 ⇒  0 ≻ 𝑖, which is contradiction.

In the second case we can get a contradiction in a similar way. Indeed,

−𝑖 ≻ 0 ⇒  (−𝑖)3 ≻ 0 ⇒  𝑖 ≻ 0 ⇒  0 ≻ −𝑖.

The third case is obviously impossible.

5. (a) Since 𝑧(𝑡∗) ∈ Ω = Ω1 ∪ Ω2, we get 𝑧(𝑡∗) ∈ Ω1 or 𝑧(𝑡∗) ∈ Ω2.

First, Suppose 𝑧(𝑡∗) ∈ Ω1. Since Ω1 is an open set, there exists 𝑟 > 0 such that 𝐷𝑟(𝑧(𝑡∗)) ⊂ Ω1. 𝑧 is
continuous function so there exists small 𝛿 > 0 such that |𝑧(𝑡∗ + 𝛿) − 𝑧(𝑡∗)| < 𝑟. Then we get

𝑡∗ = sup
0≤𝑡≤1

{𝑡 : 𝑧(𝑠) ∈ Ω1 for all 0 ≤ 𝑠 < 𝑡} ≥ 𝑡∗ + 𝛿,

which is contradiction.

Now we suppose 𝑧(𝑡∗) ∈ Ω2. Since Ω2 is an open set, there exists a 𝑟 > 0 such that 𝐷𝑟(𝑧(𝑡∗)) ⊂ Ω2.
Also, 𝑡 < 𝑡∗ ⇒ 𝑧(𝑡) ∈ Ω1 holds by the definition of 𝑡∗. If we take 𝑡 ∈ [0, 1] slightly smaller than 𝑡∗

so that |𝑧(𝑡) − 𝑧(𝑡∗)| < 𝑟, then 𝑧(𝑡) belongs to both Ω1 and Ω2 which is contradiction.
(b) First we prove that Ω1 is an open set. Let 𝑤1 ∈ Ω1. Since 𝑤1 ∈ Ω, there exists 𝑟 > 0 such that

𝐷𝑟(𝑤1) ⊂ Ω1. Now we can join any 𝑧 ∈ 𝐷𝑟(𝑤1) by a curve contained in Ω, by connecting the two
curves; the curve from 𝑤 to 𝑤1 which is guaranteed by the definition of Ω1, and the straight line
from 𝑤1 to 𝑧. Hence 𝐷𝑟(𝑤1) ⊂ Ω1 and we conclude that Ω1 is open.

𝑤

𝑤1

𝐷𝑟(𝑤1)

𝑧

Second we prove that Ω2 is an open set. Similar to the argument above, we can see that the points
in the neighborhood of 𝑤2 ∈ Ω2 cannot be joined to 𝑤. That’s because if it is possible, we can join
𝑤2 from 𝑤 by going through that point, which is contradiction.

Since we can only do one or the other, you can either connect or disconnect the line, Ω1 and Ω2 is
disjoint and their union is Ω.

Finally, since 𝑤 ∈ Ω1 so Ω1 is non-empty, we get Ω1 = Ω and Ω2 = ⌀.

6. (a) 𝒞𝑧 is open because neighborhood of some point in 𝒞𝑧 is also contained in 𝒞𝑧. Also, 𝐶𝑧 is pathwise
connected, because if 𝑤1, 𝑤2 ∈ 𝒞𝑧 then we can connect 𝑤1 and 𝑤2 by going through 𝑧. The pathwise
connectedness of 𝒞𝑧 implies connectedness of 𝒞𝑧 by Exercise 5.

Now we show that 𝑤 ∈ 𝒞𝑧 defines an equivalence relation. This is quiet simple. We can join 𝑧 to 𝑧,
so 𝑧 ∈ 𝒞𝑧. If we can join 𝑤 to 𝑧, then we can also join 𝑧 to 𝑤 by reversing that curve. Finally, if we
can join 𝑤 to 𝑧 and join 𝜁 to 𝑧, then we can join 𝑤 to 𝜁 by connecting two curves.
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(b) Each component have more than one rational points. If there are uncountably many distinct con-
nected components, then there are uncountably many rational points in Ω, which is contradiction.

(c) Since Ω is compact, there exists 𝑀 > 0 such that 𝑧 ∈ Ω ⇒ |𝑧| ≤ 𝑀 . Now we take 𝑧0 > 𝑀  and
consider 𝒞𝑧0

. Clearly this component is unbounded. Also, another unbounded component 𝒞𝑧′  cannot
exist because if it exists, then 𝒞𝑧0

 and 𝒞𝑧′  cannot be disjoint.

7. (a) Observe that we can assume 𝑧 is real. If not, 𝑧 = 𝑟𝑒𝑖𝜃, then

| 𝑤 − 𝑧
1 − 𝑤𝑧

| = | 𝑒−𝑖𝜃(𝑤 − 𝑧)
1 − (𝑒𝑖𝜃𝑤)(𝑒−𝑖𝜃𝑧)

| = | 𝑒−𝑖𝜃𝑤 − 𝑟
1 − 𝑒−𝑖𝜃𝑤 𝑟

| = | 𝑤′ − 𝑟
1 − 𝑤′𝑟

|

with 𝑤′ = 𝑒−𝑖𝜃𝑤.

Now we prove |(𝑤 − 𝑟)/(1 − 𝑤𝑟)| ≤ 1. Square both sides and expand to get

(𝑟 − 𝑤)(𝑟 − 𝑤) ≤ (1 − 𝑟𝑤)(1 − 𝑟𝑤)  ⇔  𝑤𝑤(1 − 𝑟2) ≤ 1 − 𝑟2  ⇔  (1 − 𝑟2)(1 − |𝑤|2) ≥ 0.

Hence equality holds when |𝑧| = 1 or |𝑤| = 1.
(b) (i) By (a), 𝐹(𝑧) ≤ 1 whenever |𝑧| ≤ 1. Therefore F maps the unit disc to itself. Since 𝐹  is product

of holomorphic functions, 𝐹  is also holomorphic.
(ii) 𝐹(0) = |(𝑤 − 0)/(1 − 𝑤 ⋅ 0)| = 𝑤, 𝐹(𝑤) = |(𝑤 − 𝑤)/(1 − 𝑤 ⋅ 𝑤)| = 0.

(iii) |𝐹 (𝑧)| = 1 whenever |𝑧| = 1 by (a).
(iv) Observe that

𝐹(𝐹(𝑧)) =
𝑤 − 𝑤−𝑧

1−𝑤𝑧
1 − 𝑤 𝑤−𝑧

1−𝑤𝑧
= 𝑤 − 𝑤𝑤𝑧 − 𝑤 + 𝑧

1 − 𝑤𝑧 − 𝑤𝑤 + 𝑤𝑧
= 1 − 𝑤𝑤

1 − 𝑤𝑤
𝑧 = 𝑧.

𝐹  is injective because 𝐹(𝑧) = 𝐹(𝑤) ⇒ 𝐹(𝐹(𝑧)) = 𝐹(𝐹(𝑤)) ⇒ 𝑧 = 𝑤. 𝐹  is surjective because
for any 𝑤 ∈ 𝔻, 𝑧 = 𝐹(𝑤) satisfies 𝐹(𝑧) = 𝐹(𝐹(𝑤)) = 𝑤, so 𝑤 belongs to image of 𝐹 .

8. Let 𝑓(𝑥 + 𝑖𝑦) = 𝑎(𝑥, 𝑦) + 𝑖𝑏(𝑥, 𝑦), 𝑔(𝑎 + 𝑖𝑏) = 𝑐(𝑎, 𝑏) + 𝑖𝑑(𝑎, 𝑏).

𝜕ℎ
𝜕𝑧

= 1
2
(𝜕ℎ

𝜕𝑥
− 𝑖𝜕ℎ

𝜕𝑦
) = 1

2
(𝜕𝑐

𝜕𝑥
+ 𝑖𝜕𝑑

𝜕𝑥
− 𝑖𝜕𝑐

𝜕𝑦
+ 𝜕𝑑

𝜕𝑦
)

= 1
2
(𝜕𝑐

𝜕𝑧
𝜕𝑎
𝜕𝑥

+ 𝜕𝑐
𝜕𝑏

𝜕𝑏
𝜕𝑥

+ 𝜕𝑑
𝜕𝑎

𝜕𝑎
𝜕𝑦

+ 𝜕𝑑
𝜕𝑏

𝜕𝑏
𝜕𝑦

) + 1
2
𝑖(𝜕𝑑

𝜕𝑎
𝜕𝑎
𝜕𝑥

+ 𝜕𝑑
𝜕𝑏

𝜕𝑏
𝜕𝑥

− 𝜕𝑐
𝜕𝑎

𝜕𝑎
𝜕𝑦

− 𝜕𝑐
𝜕𝑏

𝜕𝑏
𝜕𝑦

).

Now we calculate 𝜕𝑔
𝜕𝑧

𝜕𝑓
𝜕𝑧 + 𝜕𝑔

𝜕𝑧
𝜕𝑓
𝜕𝑧 .

𝜕𝑔
𝜕𝑧

= 1
2
(𝜕𝑔

𝜕𝑎
− 𝑖𝜕𝑔

𝜕𝑏
) = 1

2
(𝜕𝑐

𝜕𝑎
+ 𝜕𝑑

𝜕𝑏
) + 1

2
𝑖(𝜕𝑑

𝜕𝑎
− 𝜕𝑐

𝜕𝑏
),

𝜕𝑓
𝜕𝑧

= 1
2
(𝜕𝑓

𝜕𝑥
− 𝑖𝜕𝑓

𝜕𝑦
) = 1

2
(𝜕𝑎

𝜕𝑥
+ 𝜕𝑏

𝜕𝑦
) + 1

2
𝑖(𝜕𝑑

𝜕𝑎
− 𝜕𝑐

𝜕𝑏
).

Therefore

𝜕𝑔
𝜕𝑧

𝜕𝑓
𝜕𝑧

= 1
4
(𝜕𝑐

𝜕𝑎
𝜕𝑎
𝜕𝑥

+ 𝜕𝑐
𝜕𝑎

𝜕𝑏
𝜕𝑦

+ 𝜕𝑑
𝜕𝑏

𝜕𝑎
𝜕𝑥

+ 𝜕𝑑
𝜕𝑏

𝜕𝑏
𝜕𝑦

− 𝜕𝑑
𝜕𝑎

𝜕𝑏
𝜕𝑥

+ 𝜕𝑐
𝜕𝑏

𝜕𝑏
𝜕𝑥

+ 𝜕𝑑
𝜕𝑎

𝜕𝑎
𝜕𝑦

− 𝜕𝑐
𝜕𝑏

𝜕𝑎
𝜕𝑦

)

+1
4
𝑖(𝜕𝑐

𝜕𝑎
𝜕𝑏
𝜕𝑥

− 𝜕𝑐
𝜕𝑎

𝜕𝑎
𝜕𝑦

+ 𝜕𝑑
𝜕𝑏

𝜕𝑏
𝜕𝑥

− 𝜕𝑑
𝜕𝑏

𝜕𝑎
𝜕𝑦

+ 𝜕𝑑
𝜕𝑎

𝜕𝑎
𝜕𝑥

+ 𝜕𝑑
𝜕𝑎

𝜕𝑏
𝜕𝑦

− 𝜕𝑐
𝜕𝑏

𝜕𝑎
𝜕𝑥

− 𝜕𝑐
𝜕𝑏

𝜕𝑏
𝜕𝑦

).

Also,

𝜕𝑔
𝜕𝑧

= 1
2
(𝜕𝑐

𝜕𝑎
− 𝜕𝑑

𝜕𝑏
) + 1

2
𝑖(𝜕𝑑

𝜕𝑎
+ 𝜕𝑐

𝜕𝑏
)
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𝜕𝑓
𝜕𝑧

= 1
2
(𝜕𝑎

𝜕𝑥
− 𝜕𝑏

𝜕𝑦
) + 1

2
𝑖(−𝜕𝑏

𝜕𝑥
− 𝜕𝑎

𝜕𝑦
)

Therefore

𝜕𝑔
𝜕𝑧

𝜕𝑓
𝜕𝑧

= 1
4
(𝜕𝑐

𝜕𝑎
𝜕𝑎
𝜕𝑥

− 𝜕𝑐
𝜕𝑎

𝜕𝑏
𝜕𝑦

− 𝜕𝑑
𝜕𝑏

𝜕𝑎
𝜕𝑥

+ 𝜕𝑑
𝜕𝑏

𝜕𝑏
𝜕𝑦

+ 𝜕𝑑
𝜕𝑎

𝜕𝑏
𝜕𝑥

+ 𝜕𝑐
𝜕𝑏

𝜕𝑏
𝜕𝑥

+ 𝜕𝑑
𝜕𝑎

𝜕𝑎
𝜕𝑦

+ 𝜕𝑐
𝜕𝑏

𝜕𝑎
𝜕𝑦

)

+1
4
𝑖(−𝜕𝑐

𝜕𝑎
𝜕𝑏
𝜕𝑥

− 𝜕𝑐
𝜕𝑎

𝜕𝑎
𝜕𝑦

+ 𝜕𝑑
𝜕𝑏

𝜕𝑏
𝜕𝑥

− 𝜕𝑑
𝜕𝑏

𝜕𝑎
𝜕𝑦

+ 𝜕𝑑
𝜕𝑎

𝜕𝑎
𝜕𝑥

− 𝜕𝑑
𝜕𝑎

𝜕𝑏
𝜕𝑦

+ 𝜕𝑐
𝜕𝑏

𝜕𝑎
𝜕𝑥

− 𝜕𝑐
𝜕𝑏

𝜕𝑏
𝜕𝑦

).

Finally, we get

𝜕𝑔
𝜕𝑧

𝜕𝑓
𝜕𝑧

+ 𝜕𝑔
𝜕𝑧

𝜕𝑓
𝜕𝑧

= 1
4
(2𝜕𝑐

𝜕𝑎
𝜕𝑎
𝜕𝑥

+ 2𝜕𝑑
𝜕𝑏

𝜕𝑏
𝜕𝑦

+ 2𝜕𝑑
𝜕𝑎

𝜕𝑎
𝜕𝑦

+ 2𝜕𝑐
𝜕𝑏

𝜕𝑏
𝜕𝑥

)

+1
4
(−2𝜕𝑐

𝜕𝑎
𝜕𝑎
𝜕𝑦

+ 2𝜕𝑑
𝜕𝑏

𝜕𝑏
𝜕𝑥

+ 2𝜕𝑑
𝜕𝑎

𝜕𝑎
𝜕𝑥

− 2𝜕𝑐
𝜕𝑏

𝜕𝑏
𝜕𝑦

)

= 𝜕ℎ
𝜕𝑧

.

Similarly, one can get 𝜕ℎ
𝜕𝑧 = 𝜕𝑔

𝜕𝑧
𝜕𝑓
𝜕𝑧 + 𝜕𝑔

𝜕𝑧
𝜕𝑓
𝜕𝑧  by calculation.

9. Let 𝑓(𝑟𝑒𝑖𝜃) = 𝑢(𝑟, 𝜃) + 𝑖𝑣(𝑟, 𝜃), and we calculate 𝑓 ′(𝑧) in two different ways.

When 𝜃 is fixed,

𝑓 ′(𝑧) = lim
𝑟′→𝑟

𝑓(𝑟′𝑒𝑖𝜃) − 𝑓(𝑟𝑒𝑖𝜃)
𝑟′𝑒𝑖𝜃 − 𝑟𝑒𝑖𝜃

= lim
𝑟′→𝑟

𝑢(𝑟′, 𝜃) + 𝑖𝑣(𝑟′, 𝜃) − 𝑢(𝑟, 𝜃) − 𝑖𝑣(𝑟, 𝜃)
(𝑟′ − 𝑟)𝑒𝑖𝜃 = 1

𝑒𝑖𝜃 (𝜕𝑢
𝜕𝑟

+ 𝑖𝜕𝑣
𝜕𝑟

).

When 𝑟 is fixed,

𝑓 ′(𝑧) = lim
𝜃′→𝜃

𝑓(𝑟𝑒𝑖𝜃′) − 𝑓(𝑟𝑒𝑖𝜃)
𝑟(𝑒𝑖𝜃′ − 𝑒𝑖𝜃)

= lim
𝜃′→𝜃

1
𝑟

⋅ 𝜃′ − 𝜃
𝑒𝑖𝜃′ − 𝑒𝑖𝜃 ⋅

𝑓(𝑟𝑒𝑖𝜃′) − 𝑓(𝑟𝑒𝑖𝜃)
𝜃′ − 𝜃

= 1
𝑟

⋅ 1
𝑖𝑒𝑖𝜃 (𝜕𝑢

𝜕𝜃
+ 𝑖𝜕𝑣

𝜕𝜃
).

These two values have to be same, that is,

𝑖𝑟(𝜕𝑢
𝜕𝑟

+ 𝑖𝜕𝑣
𝜕𝑟

) = 𝜕𝑢
𝜕𝜃

+ 𝑖𝜕𝑣
𝜕𝜃

.

Comparing real and imaginary parts, we get

𝜕𝑢
𝜕𝑟

= 1
𝑟

𝜕𝑣
𝜕𝜃

,  1
𝑟

𝜕𝑢
𝜕𝜃

= −𝜕𝑣
𝜕𝑟

.

Now we show that logarithm function with 𝑢(𝑟, 𝜃) = log 𝑟, 𝑣(𝑟, 𝜃) = 𝜃 is holomorphic. Observe that
Cauchy-Riemann equations holds in an open set because

𝑟 ⋅ 1
𝑟

= 1,  −𝑟 ⋅ 0 = 0.

therefore log 𝑧 is holomorphic in the region 𝑟 > 0 and −𝜋 < 𝜃 < 𝜋.
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10.
4 𝜕
𝜕𝑧

𝜕
𝜕𝑧

= (2 𝜕
𝜕𝑧

)(2 𝜕
𝜕𝑧

) = ( 𝜕
𝜕𝑥

+ 𝑖 𝜕
𝜕𝑦

)( 𝜕
𝜕𝑥

− 𝑖 𝜕
𝜕𝑦

)

= 𝜕2

𝜕𝑥2 − 𝑖 𝜕2

𝜕𝑥𝜕𝑦
+ 𝑖 𝜕2

𝜕𝑦𝜕𝑥
+ 𝜕2

𝜕𝑦2 = 𝜕2

𝜕𝑥2 + 𝜕2

𝜕𝑦2 = ∆.

Similarly, we can get 4(𝜕/𝜕𝑧)(𝜕/𝜕𝑧) = ∆.

11. Let 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦). Since 𝑓  is holomorphic in the open set Ω,

0 = (𝜕𝑓
𝜕𝑧

) = 𝜕𝑢
𝜕𝑢

+ 𝑖𝜕𝑣
𝜕𝑧

= 0.

Hence 𝜕𝑢/𝜕𝑧 = 0 and 𝜕𝑣/𝜕𝑧 = 0. By Exercise 10,

∆𝑢 = 4𝜕𝑢
𝜕𝑧

𝜕𝑢
𝜕𝑧

= 4𝜕𝑢
𝜕𝑧

⋅ 0 = 0,

∆𝑣 = 4𝜕𝑣
𝜕𝑧

𝜕𝑣
𝜕𝑧

= 4𝜕𝑣
𝜕𝑧

⋅ 0 = 0.

Therefore the real and imaginary parts of 𝑓  are harmonic.

12. Note that the real and imaginary parts of 𝑓  are 𝑢(𝑥, 𝑦) = √|𝑥‖𝑦| and 𝑣(𝑥, 𝑦) = 0.

𝜕𝑢
𝜕𝑥

(0, 0) = lim
𝑥→0

√|𝑥| ⋅ 0 − 0
𝑥 − 0

= 0,  𝜕𝑢
𝜕𝑦

(0, 0) = lim
𝑦→0

√0 ⋅ |𝑦| − 0
𝑦 − 0

= 0,

Similarly,

𝜕𝑣
𝜕𝑥

(0, 0) = 0,  𝜕𝑣
𝜕𝑦

(0, 0) = 0.

Therefore 𝑓  satisfies the Cauchy-Riemann equations at the origin.

However, we cannot apply Theorem 2.4 because Cauchy-Riemann equations can’t be satisfied in any
open set containing origin. In fact, 𝑓  is not holomorphic at 0 because the derivatives of 𝑓  diverges near
0.

13. Let 𝑓(𝑥 + 𝑖𝑦) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦). By Cauchy-Riemann equations, 𝜕𝑢/𝜕𝑥 = 𝜕𝑣/𝜕𝑦, 𝜕𝑢/𝜕𝑦 =
−𝜕𝑣/𝜕𝑥 holds.
(a) Suppose 𝑢 is constant, then 𝜕𝑢/𝜕𝑥 = 𝜕𝑢/𝜕𝑦 = 0. then by Cauchy-Riemann equations, 𝜕𝑣/𝜕𝑥 =

𝜕𝑣/𝜕𝑦 = 0. Therefore 𝑣 is constant, and 𝑓 = 𝑢 + 𝑖𝑣 is constant.
(b) Similar to argument above, if we suppose 𝑣 is constant, then 𝜕𝑣/𝜕𝑥 = 𝜕𝑣/𝜕𝑦 = 0, hence 𝜕𝑢/𝜕𝑥 =

𝜕𝑢/𝜕𝑦 = 0, which means 𝑢 is constant and 𝑓 = 𝑢 + 𝑖𝑣 is constant.
(c) Since |𝑓| is constant, 𝑢2 + 𝑣2 = |𝑓|2 is also constant. Therefore

𝜕(𝑢2 + 𝑣2)
𝜕𝑥

= 2𝑢𝜕𝑢
𝜕𝑥

+ 2𝑣𝜕𝑣
𝜕𝑥

= 0,  
𝜕(𝑢2 + 𝑣2)

𝜕𝑦
= 2𝑢𝜕𝑢

𝜕𝑦
+ 2𝑣𝜕𝑣

𝜕𝑦
= 0.

Use Cauchy-Riemann equations to get

𝑢𝜕𝑢
𝜕𝑥

− 𝑣𝜕𝑢
𝜕𝑦

= 0,  𝑣𝜕𝑢
𝜕𝑥

+ 𝑢𝜕𝑢
𝜕𝑦

= 0

and

(𝑢2 + 𝑣2)𝜕𝑢
𝜕𝑥

= (𝑢2 + 𝑣2)𝜕𝑢
𝜕𝑦

= 0.
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If |𝑓(𝑧)| = 0 for some points in Ω, since |𝑓| is constant, 𝑓 ≡ 0. If not, then 𝑢2 + 𝑣2 ≠ 0 for all points
in Ω, 𝜕𝑢/𝜕𝑥 = 𝜕𝑢/𝜕𝑦 = 0 for all points in Ω by the formula above. Hence 𝑢 is constant, and 𝑣 is
constant by (a), also is 𝑓 = 𝑢 + 𝑖𝑣.

14.
∑
𝑁

𝑛=𝑀
𝑎𝑛𝑏𝑛 = ∑

𝑁

𝑛=𝑀
𝑎𝑛(𝐵𝑛 − 𝐵𝑛−1) = ∑

𝑁

𝑛=𝑀
𝑎𝑛𝐵𝑛 − ∑

𝑁

𝑛=𝑀
𝑎𝑛𝐵𝑛−1

= ∑
𝑁

𝑛=𝑀
𝑎𝑛𝐵𝑛 − ∑

𝑁−1

𝑛=𝑀−1
𝑎𝑛+1𝐵𝑛

= 𝑎𝑁𝐵𝑁 − 𝑎𝑀𝐵𝑀−1 + ∑
𝑁−1

𝑛=𝑀
𝑎𝑛𝐵𝑛 − ∑

𝑁−1

𝑛=𝑀
𝑎𝑛+1𝐵𝑛

= 𝑎𝑁𝐵𝑁 − 𝑎𝑀𝐵𝑀−1 − ∑
𝑁−1

𝑛=𝑀
(𝑎𝑛+1 − 𝑎𝑛)𝐵𝑛

15. Use summation by parts formula to get

∑
𝑁

𝑛=1
(1 − 𝑟𝑛)𝑎𝑛 = (1 − 𝑟𝑁)𝐴𝑁 − (1 − 𝑟)𝐴0 − ∑

𝑁−1

𝑛=1
((1 − 𝑟𝑛+1) − (1 − 𝑟𝑛))𝐴𝑛

= (1 − 𝑟𝑁)𝐴𝑁 − (1 − 𝑟) ∑
𝑁−1

𝑛=1
𝑟𝑛𝐴𝑛.

Note that ∑𝑁
𝑛=1 𝑟𝑛𝑎𝑛 and ∑𝑁

𝑛=1 𝑟𝑛𝐴𝑛 converges whenever 0 < 𝑟 < 1.

Let 𝐴 = lim𝑛→∞ 𝐴𝑛, then for every 𝜀 > 0, there exists 𝑀 > 0 such that 𝑛 > 𝑀 ⇒ |𝐴𝑛 − 𝐴| < 𝜀. Also,
(1 − 𝑟) ∑∞

𝑛=1 𝑟𝑛𝐴𝑛 = 𝐴 holds because

|(1 − 𝑟) ∑
∞

𝑛=1
𝑟𝑛𝐴𝑛 − 𝐴| = (1 − 𝑟)|∑

∞

𝑛=1
𝑟𝑛(𝐴𝑛 − 𝐴)| ≤ (1 − 𝑟) ∑

∞

𝑛=1
𝑟𝑛|𝐴𝑛 − 𝐴|

= (1 − 𝑟)(∑
𝑀

𝑛=1
𝑟𝑛|𝐴𝑛 − 𝐴| + ∑

∞

𝑛=𝑀+1
𝑟𝑛|𝐴𝑛 − 𝐴|)

≤ (1 − 𝑟)(∑
𝑀

𝑛=1
𝑟𝑛|𝐴𝑛 − 𝐴| + ∑

∞

𝑛=𝑀+1
𝑟𝑛𝜀)

= (1 − 𝑟) ∑
𝑀

𝑛=1
𝑟𝑛|𝐴𝑛 − 𝐴| + 𝑟𝑀+1𝜀

< 2𝜀

for 𝑟 close enough to 1. Finally we get

lim
𝑟→1,𝑟<1

∑
∞

𝑛=1
(1 − 𝑟𝑛)𝑎𝑛 = lim

𝑟→1,𝑟<1
𝐴 − (1 − 𝑟) ∑

∞

𝑛=1
𝑟𝑛𝐴𝑛 = 𝐴 − 𝐴 = 0

and

lim
𝑟→1,𝑟<1

∑
∞

𝑛=1
𝑟𝑛𝑎𝑛 = ∑

∞

𝑛=1
𝑎𝑛.

16. (a) (log(𝑛 + 1))2/(log 𝑛)2 = (1 + 1
log 𝑛 log(𝑛+1

𝑛 ))
2

→ 1 as 𝑛 → ∞, the radius of convergence is 1.
(b) (𝑛 + 1)!/𝑛! = 𝑛 + 1 → ∞ as 𝑛 → ∞, the radius of convergence is 0.
(c) ( (𝑛+1)2

4𝑛+1+3𝑛+3)/( 𝑛2

4𝑛+3𝑛) = 4𝑛+3𝑛
4𝑛+1+3𝑛+3 ⋅ (𝑛+1)2

𝑛2 → 1/4 as 𝑛 → ∞, the radius of convergence is 4.
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(d) ((𝑛+1)!)3

(3𝑛+3)! / (𝑛!)3

(3𝑛)! = ( (𝑛+1)!
𝑛! )

3
⋅ (3𝑛)!

(3𝑛+3)! = (𝑛+1)3

(3𝑛+3)(3𝑛+2)(3𝑛+1) → 1
27  as 𝑛 → ∞, the radius of conver-

gence is 27.
(e) The ratio of two consecutive terms is (𝛼+𝑛)(𝛽+𝑛)

(𝑛+1)(𝛾+𝑛) → 1 as 𝑛 → ∞, the radius of convergence is 1.
(f) Rewrite the series to ∑∞

𝑛=0
(−1)𝑛

𝑛!(𝑛+𝑟)!
1

22𝑛 (𝑧2)𝑛 and treat as a function of 𝑧2. Then the ratio of two
consecutive terms is −1

(𝑛+1)(𝑛+𝑟+1)22 → 0 as 𝑛 → ∞, the radius of convergence is ∞.

17. By definition, for every 𝜀 > 0, there exists 𝑁 > 0 such that 𝑛 ≥ 𝑁 ⇒ ||𝑎𝑛+1/𝑎𝑛| − 𝐿| < 𝜀, that is, 𝐿 −
𝜀 < |𝑎𝑛+1/𝑎𝑛| < 𝐿 + 𝜀. Multiplying this inequalities from 𝑛 = 𝑁  to 𝑛 = 𝑘 − 1, we get (𝐿 − 𝜀)𝑘−𝑁 <
|𝑎𝑘/𝑎𝑁 | < (𝐿 + 𝜀)𝑘−𝑁 , and

(𝐿 − 𝜀)1−𝑁/𝑘|𝑎𝑁 |1/𝑘 < |𝑎𝑘|1/𝑘 < (𝐿 + 𝜀)1−𝑁/𝑘|𝑎𝑁 |1/𝑘.

For sufficiently large 𝑘, we get 𝐿 − 2𝜀 < |𝑎𝑘|1/𝑘 < 𝐿 + 2𝜀, so the proof is complete.

18. Suppose 𝑓  has power series expansion

𝑓(𝑧) = ∑
∞

0
𝑎𝑛𝑧𝑛 (|𝑧| < 𝑅).

Since radius of convergence of 𝑓  is 𝑅,

lim sup
𝑛→∞

|𝑎𝑛|1/𝑛 = 1
𝑅

holds. Now fix 𝑧0 such that |𝑧0| < 𝑅. Then

∑
𝑁

𝑛=0
𝑎𝑛𝑧𝑛 = ∑

∞

𝑛=0
𝑎𝑛(𝑧0 + (𝑧 − 𝑧0))

𝑛 = ∑
∞

𝑛=0
𝑎𝑛 ∑

𝑛

𝑘=0
(𝑛

𝑘)𝑧𝑛−𝑘
0 (𝑧 − 𝑧0)

𝑘

= ∑
𝑁

𝑘=0
(∑

𝑁

𝑛=𝑘
𝑎𝑛(𝑛

𝑘)𝑧𝑛−𝑘
0 )(𝑧 − 𝑧0)

𝑘 = ∑
𝑁

𝑘=0
𝑏𝑘(𝑁)(𝑧 − 𝑧0)

𝑘,

where we defined

𝑏𝑘(𝑁) = ∑
𝑁

𝑛=𝑘
𝑎𝑛(𝑛

𝑘)𝑧𝑛−𝑘
0 .

Observe that

lim sup
𝑛→∞

|𝑎𝑛(𝑛
𝑘)|

1/𝑛

= 1
𝑅

,

and |𝑧0| < 𝑅, therefore 𝑏𝑘(𝑁) converges as 𝑁 → ∞, let’s call that limit 𝑏𝑘.

Now we want to show that

∑
∞

𝑛=0
𝑎𝑛𝑧𝑛 = ∑

∞

𝑘=0
𝑏𝑘(𝑧 − 𝑧0)

𝑘

for appropriate set of 𝑧. By definition, the equation above is exactly the same as the one below.

∑
∞

𝑛=0
∑

𝑛

𝑘=0
𝑎𝑛(𝑛

𝑘)𝑧𝑛−𝑘
0 (𝑧 − 𝑧0)

𝑘 = ∑
∞

𝑘=0
∑
∞

𝑛=𝑘
𝑎𝑛(𝑛

𝑘)𝑧𝑛−𝑘
0 (𝑧 − 𝑧0)

𝑘

Now we only need to show that

8



∑
∞

𝑛=0
(∑

𝑛

𝑘=0
 |𝑎𝑛(𝑛

𝑘)𝑧𝑛−𝑘
0 (𝑧 − 𝑧0)

𝑘|) < ∞.

(See the end of Chapter 7, which discusses interchanging the order of double sums.)

Since

∑
∞

𝑛=0
(∑

𝑛

𝑘=0
 |𝑎𝑛(𝑛

𝑘)𝑧𝑛−𝑘
0 (𝑧 − 𝑧0)

𝑘|) ≤ ∑
∞

𝑛=0
(∑

𝑛

𝑘=0
|𝑎𝑛|(𝑛

𝑘)|𝑧0|
𝑛−𝑘|𝑧 − 𝑧0|

𝑘)

= ∑
∞

𝑛=0
|𝑎𝑛|(|𝑧0| + |𝑧 − 𝑧𝑜|)

𝑘,

we can interchange the sum whenever |𝑧 − 𝑧0| < 𝑅 − |𝑧0|, hence 𝑓  has power series expansion around
𝑧0.

Note. I thought that the radius of convergence of a power series expansion centered at 𝑧0 is exactly 𝑅 −
|𝑧0|. Therefore, I tried to prove the following, but was unable to do so.

lim sup
𝑘→∞

|∑
𝑁

𝑛=𝑘
𝑎𝑛(𝑛

𝑘)𝑧𝑛−𝑘
0 |

1/𝑘

= 1
𝑅 − |𝑧0|

19. (a) This power series can’t converge because |𝑛𝑧𝑛| = 𝑛 → 0.
(b) This power series absolutely converges because |𝑧𝑛/𝑛2| = 1

𝑛2  and ∑ 1/𝑛2 converges.
(c) If 𝑧 = 1, this series obviously diverges. If not, use summation by parts formula to get

∑
𝑁

𝑛=1

1
𝑛

𝑧𝑛 = 1
𝑁

𝑍𝑁 − ∑
𝑁−1

𝑛=1
( 1

𝑛 + 1
− 1

𝑛
)𝑍𝑛 = 1

𝑁
𝑍𝑁 + ∑

𝑁−1

𝑛=1

1
𝑛(𝑛 + 1)

𝑍𝑛,

where 𝑍𝑛 = ∑𝑁
𝑛=1 𝑧𝑛 = 𝑧 1−𝑧𝑁

1−𝑧 . Since 𝑍𝑛 is bounded whenever |𝑧| = 1, series above converges.

20. Since 𝑎𝑛 = 1
𝑛!𝑓

(𝑛)(0), we get

𝑎𝑛 = 𝑚(𝑚 + 1)(𝑚 + 2) ⋯ (𝑚 + 𝑛 − 1)
𝑛!

= (𝑛 + 𝑚 − 1)!
(𝑚 − 1)!𝑛!

= 1
(𝑚 − 1)!

⋅ (𝑛 + 𝑚 − 1)!
𝑛!

∼ 1
(𝑚 − 1)!

𝑛𝑚−1.

21. Just calculate the sum of first 𝑘 + 1 terms and take a limit.

∑
𝑘

𝑛=0

𝑧2𝑛

1 − 𝑧2𝑛+1 = 𝑧 + 𝑧2 + ⋯ + 𝑧2𝑛+1−1

1 − 𝑧2𝑛+1 =
𝑧 ⋅ 1−𝑧2𝑛+1−1

1−𝑧
1 − 𝑧2𝑛+1 = 𝑧

1 − 𝑧
1 − 𝑧2𝑛+1−1

1 − 𝑧2𝑛+1 →→→→→→→→→→
𝑘→∞ 𝑧

1 − 𝑧
,

∑
𝑘−1

𝑛=0

2𝑛𝑧2𝑛

1 + 𝑧2𝑛 =
𝑧 + 𝑧2 + ⋯ + 𝑧2𝑘−1 − (2𝑘 − 1)𝑧2𝑘

1 − 𝑧2𝑘 =
𝑧 ⋅ 1−𝑧2𝑘−1

1−𝑧 − (2𝑘 − 1)𝑧2𝑘

1 − 𝑧2𝑘

= 1
1 − 𝑧

1
1 − 𝑧2𝑘 (𝑧 − 𝑧2𝑘 − 2𝑘𝑧2𝑘+1 + 𝑧2𝑘+1) →→→→→→→→→→

𝑘→∞ 𝑧
1 − 𝑧

.

Since all but the first term are positive, any rearrangement of its terms still converges to the same value.

22. Suppose ℕ can be partitioned into a finite number of subsets that are in arithmetic progression with
distinct steps. Then we can write
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∑
∞

𝑛=1
𝑧𝑛 = ∑

𝑁

𝑖=1
∑
∞

𝑗=0
𝑧𝑎𝑖+𝑗𝑑𝑖 ⇒  𝑧

1 − 𝑧
= ∑

𝑁

𝑖=1

𝑧𝑎𝑖

1 − 𝑧𝑑𝑖
.

with 𝑁 ≥ 2 and all 𝑑𝑖 > 1. Now multiply (1 − 𝑧)(1 − 𝑧𝑑1)(1 − 𝑧𝑑2) ⋯ (1 − 𝑧𝑑𝑁) both sides to get

𝑧(1 − 𝑧𝑑1) ⋯ (1 − 𝑧𝑑𝑁)

= 𝑧𝑎1(1 − 𝑧)(1 − 𝑧𝑑2) ⋯ (1 − 𝑧𝑑𝑁) + ⋯ + 𝑧𝑎𝑁(1 − 𝑧)(1 − 𝑧𝑑1) ⋯ (1 − 𝑧𝑑𝑁−1).

Let 𝑧1 = 𝑒2𝜋𝑖/𝑑1  and consider a limit 𝑧 → 𝑧1. Since all terms multiplied by (1 − 𝑧𝑑1) converge to zero,
the one remaining term

𝑧𝑎1(1 − 𝑧)(1 − 𝑧𝑑2) ⋯ (1 − 𝑧𝑑𝑁)

should also converge to zero. Hence there exists a integer 𝑖1 such that

𝑧𝑑𝑖
1 = 𝑒

𝑑𝑖1
𝑑1

2𝜋𝑖 = 1 ⇒  𝑑1 | 𝑑𝑖1
.

In particular, 𝑑𝑖 > 0 and 𝑑𝑖 ≠ 𝑑𝑗 for any 𝑖 ≠ 𝑗, we conclude that 𝑑1 < 𝑑𝑖1
. Now repeat this process 𝑁

times to get

𝑑1 < 𝑑𝑖1
< 𝑑𝑖2

< ⋯ < 𝑑𝑖𝑁
.

Since all 𝑖𝑘 are different, at least one 𝑖𝑘 is equal to 1, which is a contradiction.

23. Observe that there exists a series of polynomials {𝑝𝑛}∞
𝑛=1 such that

𝑓 (𝑛)(𝑥) = {
0 if 𝑥 ≤ 0,
𝑝𝑛( 1

𝑥)𝑒− 1
𝑥2   if 𝑥 > 0.

  (𝑛 ≥ 0)

When 𝑛 = 0, it is trivial for 𝑝0(𝑥) = 1. Now suppose above statement is true for 𝑛 = 𝑘. Since 𝑓 (𝑘)(𝑥) is
differentiable for 𝑥 ≠ 0, we only have to check for 𝑥 = 0.

lim
𝑥→0+

𝑓 (𝑘)(𝑥) − 𝑓 (𝑘)(0)
𝑥 − 0

= lim
𝑥→0+

1
𝑥

𝑝𝑘(1
𝑥

)𝑒− 1
𝑥2 = lim

𝑡→∞
𝑡𝑝(𝑡)𝑒−𝑡2 = 0,

therefore 𝑓 (𝑘) is differentiable at 𝑥 = 0 and 𝑓 (𝑘+1)(0) = 0. Moreover,

𝑓 (𝑘+1)(𝑥) = 𝑑
𝑑𝑥

(𝑝𝑛(1
𝑥

)𝑒− 1
𝑥2 ) = (− 1

𝑥2 𝑝′
𝑛(1

𝑥
) + 2

𝑥3 𝑝𝑛(1
𝑥

))𝑒− 1
𝑥2  (𝑥 ≥ 0),

hence 𝑝𝑛+1(𝑥) = −𝑥2𝑝′
𝑛(𝑥) + 2𝑥3𝑝𝑛(𝑥). So we can conclude that 𝑎𝑛 = 𝑓 (𝑛)(0) = 0 for all 𝑛 ≥ 0.

Finally we conclude that 𝑓  does not have a converging power series expansion ∑ 𝑎𝑛𝑥𝑛 for 𝑥 near the
origin, because if it does, then 𝑓(𝑥) = ∑ 𝑎𝑛𝑥𝑛 = ∑ 0 ⋅ 𝑥𝑛 = 0, which is contradiction.

24. By using the definition of integration along curves and making the change of variables 𝑢 = 𝑎 + 𝑏 − 𝑡,

∫
𝛾−

𝑓(𝑧)𝑑𝑧 = ∫
𝑏

𝑎
𝑓(𝑧(𝑎 + 𝑏 − 𝑡))(−𝑧′(𝑎 + 𝑏 − 𝑡))𝑑𝑡

= ∫
𝑎

𝑏
𝑓(𝑧(𝑢))𝑧′(𝑢)𝑑𝑢 = − ∫

𝑏

𝑎
𝑓(𝑧(𝑢))𝑧′(𝑢)𝑑𝑢

= − ∫
𝛾

𝑓(𝑧)𝑑𝑧.

25. (a) Let 𝑧(𝑡) = 𝑅𝑒𝑖𝑡 (0 ≤ 𝑡 < 2𝜋) then
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∫
𝛾

𝑧𝑛𝑑𝑧 = ∫
2𝜋

0
(𝑅𝑒𝑖𝑡)𝑛𝑖𝑅𝑒𝑖𝑡𝑑𝑡 = 𝑖𝑅𝑛+1 ∫

2𝜋

0
𝑒(𝑛+1)𝑖𝑡𝑑𝑡 = {𝑖𝑅𝑛+12𝜋  if 𝑛 = −1,

0 if 𝑛 ≠ −1.

(b) Let 𝑧(𝑡) = 𝐴 + 𝑅𝑒𝑖𝑡 (0 ≤ 𝑡 < 2𝜋) where |𝐴| > |𝑅|.

∫
𝛾

𝑧𝑛𝑑𝑧 = ∫
2𝜋

0
(𝐴 + 𝑅𝑒𝑖𝑡)𝑛𝑖𝑅𝑒𝑖𝑡𝑑𝑡

If 𝑛 ≠ −1, then this integral can be calculated as

∫
2𝜋

0
(𝐴 + 𝑅𝑒𝑖𝑡)𝑛𝑖𝑅𝑒𝑖𝑡𝑑𝑡 = [ 1

𝑛 + 1
(𝐴 + 𝑅𝑒𝑖𝑡)𝑛+1]

2𝜋

0
= 0.

For 𝑛 = −1, the calculation is as follows;

∫
2𝜋

0
(𝐴 + 𝑅𝑒𝑖𝑡)𝑛𝑖𝑅𝑒𝑖𝑡𝑑𝑡 = 𝑖𝑅

𝐴
∫

2𝜋

0

𝑒𝑖𝑡

1 + 𝑅
𝐴𝑒𝑖𝑡 𝑑𝑡 = 𝑖𝑅

𝐴
∫

2𝜋

0
𝑒𝑖𝑡 ∑

∞

𝑛=0
(−𝑅

𝐴
𝑒𝑖𝑡)

𝑛

𝑑𝑡

= 𝑖𝑅
𝐴

∑
∞

𝑛=0
∫

2𝜋

0
(−𝑅

𝐴
)

𝑛

𝑒(𝑛+1)𝑖𝑡𝑑𝑡

= 𝑖𝑅
𝐴

∑
∞

𝑛=0
(−𝑅

𝐴
)

𝑛

[ 1
(𝑛 + 1)𝑖

𝑒(𝑛+1)𝑖𝑡]
2𝜋

0

= 0.

Therefore the integral value is always 0.
(c) Observe that

∫
𝛾

1
(𝑧 − 𝑎)(𝑧 − 𝑏)

𝑑𝑧 = 1
𝑎 − 𝑏

(∫
𝛾

1
𝑧 − 𝑎

𝑑𝑧 − ∫
𝛾

1
𝑧 − 𝑏

𝑑𝑧).

The second integral is 0 because it was calculated in (b). Now we calculate the first integral.

∫
𝛾

1
𝑧 − 𝑎

𝑑𝑧 = ∫
2𝜋

0

𝑖𝑒𝑖𝜃

𝑒𝑖𝜃 − 𝑎
𝑑𝜃 = 𝑖 ∫

2𝜋

0

1
1 − 𝑎𝑒−𝑖𝜃 𝑑𝜃 = 𝑖 ∫

2𝜋

0
∑
∞

𝑛=0
(𝑎𝑒−𝑖𝜃)𝑛𝑑𝜃

= 𝑖 ∑
∞

𝑛=0
∫

2𝜋

0
(−𝑎)𝑛𝑒−𝑖𝑛𝜃𝑑𝜃 = 𝑖 ⋅ 2𝜋 = 2𝜋𝑖

since the integral is not zero only when 𝑛 = 0. Finally we get

∫
𝛾

1
(𝑧 − 𝑎)(𝑧 − 𝑏)

𝑑𝑧 = 1
𝑎 − 𝑏

(2𝜋𝑖 − 0) = 2𝜋𝑖
𝑎 − 𝑏

.

26. Suppose 𝐹, 𝐺 are primitives of 𝑓 , hence 𝐹 ′ = 𝐺′ = 𝑓 . Note that Ω is connected, therefore pathwise
connected. Now take any point 𝑤 ∈ Ω and define 𝛾𝑤,𝑧 as the curve from 𝑤 to 𝑧. Then for any 𝑧 ∈ Ω,

(𝐹 − 𝐺)(𝑧) = ∫
𝛾𝑤,𝑧

(𝐹 − 𝐺)′(𝜁) 𝑑𝜁 + (𝐹 − 𝐺)(𝑤)

= ∫
𝛾𝑤,𝑧

0 𝑑𝜁 + (𝐹 − 𝐺)(𝑤)

= (𝐹 − 𝐺)(𝑤).

So 𝐹(𝑧), 𝐺(𝑧) is differ by a constant.
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Chapter 2. Cauchy’s Theorem and Its Applications

1. We integrate the function 𝑒−𝑧2  over the path in following figure. This is possible and the value equals 0
because 𝑒−𝑧2  is holomorphic in ℂ.

0 𝑅

𝑅𝑒𝑖𝜋
4

By Cauchy’s theorem, We get

∫
𝑅

0
𝑒−𝑥2𝑑𝑥 + ∫

𝜋
4

0
𝑒(−𝑅𝑒𝑖𝜃)2

𝑖𝑅𝑒𝑖𝜃𝑑𝜃 + ∫
0

𝑅
𝑒(−𝑡𝑒𝑖𝜋

4 )
2

𝑒𝑖𝜋
4 𝑑𝑡 = 0.

The first term converges to ∫∞
0

𝑒−𝑥2𝑑𝑥 =
√

𝜋/2. Now we estimate the second term.

|∫
𝜋
4

0
𝑒(−𝑅𝑒𝑖𝜃)2

𝑖𝑅𝑒𝑖𝜃𝑑𝜃| ≤ ∫
𝜋
4

0
|𝑒(−𝑅𝑒𝑖𝜃)2

𝑖𝑅𝑒𝑖𝜃|𝑑𝜃 = 𝑅 ∫
𝜋
4

0
𝑒−𝑅2 cos(2𝜃)𝑑𝜃

where the last value equals 𝑅2 ∫
𝜋
2

0
𝑒−𝑅2 cos 𝑥𝑑𝑥 by changing the variables 𝑥 = 2𝜃.

For large 𝑅, let 𝛿 = 𝑅−3/2 < 𝜋/2. If 𝑥 ∈ [0, 𝜋/2 − 𝛿] then cos 𝑥 ≥ cos(𝜋/2 − 𝛿) = sin 𝛿. So

𝑅
2

∫
𝜋
2

0
𝑒−𝑅2 cos 𝑥𝑑𝑥 = 𝑅

2
∫

𝜋
2 −𝛿

0
𝑒−𝑅2 cos 𝑥𝑑𝑥 + 𝑅

2
∫

𝜋
2

𝜋
2 −𝛿

𝑒−𝑅2 cos 𝑥𝑑𝑥

≤ 𝑅
2

∫
𝜋
2 −𝛿

0
𝑒−𝑅2 sin 𝛿𝑑𝑥 + 𝑅

2
∫

𝜋
2

𝜋
2 −𝛿

1 𝑑𝑥

= 𝑅
2

(𝜋
2

− 𝛿)𝑒−𝑅2 sin 𝛿 + 𝑅
2

𝛿.

Since 𝑅2 sin 𝛿 ∼ 𝑅1/2 and 𝑅𝛿 ∼ 𝑅−1/2 as 𝑅 → ∞, this sum converges to 0.

Finally, the third term is equal to

∫
𝑅

0
𝑒−𝑖𝑡2𝑒𝜋

4 𝑖𝑑𝑡 = 1 + 𝑖√
2

(∫
𝑅

0
cos(𝑡2)𝑑𝑡 − 𝑖 ∫

𝑅

0
sin(𝑡2)𝑑𝑡).

Now we take limit 𝑅 → ∞ then we get
√

𝜋
2

+ 0 + 1 + 𝑖√
2

(∫
∞

0
cos(𝑡2)𝑑𝑡 − 𝑖 ∫

∞

0
sin(𝑡2)𝑑𝑡) = 0

and

∫
∞

0
sin(𝑥2)𝑑𝑥 = ∫

∞

0
cos(𝑥2)𝑑𝑥 =

√
2𝜋
4

.

2. First observe that
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∫
∞

0

sin 𝑥
𝑥

𝑑𝑥 = ∫
∞

0

𝑒𝑖𝑥 − 𝑒−𝑖𝑥

2𝑖𝑥
𝑑𝑥 = 1

2𝑖
∫∞
0

𝑒𝑖𝑥−1
𝑥 𝑑𝑥 − ∫∞

0
𝑒−𝑖𝑥 − 1

𝑥
𝑑𝑥) =

= 1
2𝑖

(∫
∞

0

𝑒𝑖𝑥 − 1
2

𝑑𝑥 − ∫
−∞

0

𝑒𝑖𝑥 − 1
𝑥

𝑑𝑥) = 1
2𝑖

∫
∞

−∞

𝑒𝑖𝑥 − 1
2

𝑑𝑥.

Now integrate the function (𝑒𝑖𝑧 − 1)/𝑧 over the indented semicircle below.

𝑅−𝑅 𝜀−𝜀

𝛾𝑅

𝛾𝜀

Applying Cauchy’s theorem gives

∫
−𝜀

−𝑅

𝑒𝑖𝑧 − 1
𝑧

𝑑𝑧 + ∫
𝛾𝜀

𝑒𝑖𝑧 − 1
𝑧

𝑑𝑧 + ∫
𝑅

𝜀

𝑒𝑖𝑧 − 1
𝑧

𝑑𝑧 + ∫
𝛾𝑅

𝑒𝑖𝑧 − 1
𝑧

𝑑𝑧 = 0.

Since (𝑒𝑖𝑧 − 1)/𝑧 = 𝑖 + 𝐸(𝑧) where 𝐸(𝑧) → 0 as 𝑧 → 0,

|∫
𝛾𝜀

𝑒𝑖𝑧 − 1
𝑧

𝑑𝑧| ≤ 𝜋𝜀 ⋅ sup
𝑧∈𝛾𝜀

|𝑖 + 𝐸(𝑧)| ⟶⟶⟶⟶⟶
𝜀→0

0.

Integral over 𝛾𝑅 is

∫
𝛾𝑅

𝑒𝑖𝑧 − 1
𝑧

𝑑𝑧 = ∫
𝜋

0

𝑒𝑖𝑅𝑒𝑖𝜃 − 1
𝑅𝑒𝑖𝜃 𝑖𝑅𝑒𝑖𝜃𝑑𝜃 = 𝑖 ∫

𝜋

0
𝑒𝑖𝑅𝑒𝑖𝜃 − 1𝑑𝜃 = −𝜋𝑖 + ∫

𝜋

0
𝑒𝑖𝑅𝑒𝑖𝜃𝑑𝜃.

For large 𝑅, let 𝛿 = 𝑅−1/2 < 𝜋/2. Then

|∫
𝜋

0
𝑒𝑖𝑅𝑒𝑖𝜃𝑑𝜃| ≤ ∫

𝜋

0
|𝑒𝑖𝑅𝑒𝑖𝜃|𝑑𝜃 = ∫

𝜋

0
𝑒−𝑅 sin 𝜃𝑑𝜃

= ∫
𝛿

0
𝑒−𝑅 sin 𝜃𝑑𝜃 + ∫

𝜋−𝛿

𝛿
𝑒−𝑅 sin 𝜃𝑑𝜃 + ∫

𝜋

𝜋−𝛿
𝑒−𝑅 sin 𝜃𝑑𝜃

≤ 2𝛿 + (𝜋 − 2𝛿)𝑒−𝑅 sin 𝛿

which converges to 0 as 𝑅 → ∞. Therefore letting 𝜀 → 0 and 𝑅 → ∞ gives

∫
∞

−∞

𝑒𝑖𝑥 − 1
2

𝑑𝑥 = 𝜋𝑖

and

∫
∞

0

sin 𝑥
𝑥

𝑑𝑥 = 𝜋𝑖
2𝑖

= 𝜋
2
.

3. Integrate function 𝑒−𝐴𝑧 over the curve below.
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𝑤
0 𝑅

𝑅𝑒𝑖𝑤

Since 𝑒−𝐴𝑧 is holomorphic in ℂ, applying Cauchy’s theorem to get

∫
𝑅

0
𝑒−𝐴𝑡𝑑𝑡 + ∫

𝑤

0
𝑒−𝐴𝑅𝑒𝑖𝜃𝑖𝑅𝑒𝑖𝜃𝑑𝜃 + ∫

0

𝑅
𝑒−𝐴𝑡𝑒𝑖𝑤𝑒𝑖𝑤𝑑𝑡 = 0.

The first term is equal to 1
𝐴(1 − 𝑒−𝐴𝑅), which converges to 1/𝐴. The absolute value of second term is

|∫
𝑤

0
𝑒−𝐴𝑅𝑒𝑖𝜃𝑖𝑅𝑒𝑖𝜃𝑑𝜃| ≤ ∫

𝑤

0
|𝑒−𝐴𝑅𝑒𝑖𝜃𝑖𝑅𝑒𝑖𝜃|𝑑𝜃

≤ ∫
𝑤

0
𝑅𝑒−𝐴𝑅 cos 𝜃𝑑𝜃 ≤ ∫

𝑤

0
𝑅𝑒−𝐴𝑅 cos 𝑤𝑑𝜃

= 𝑤𝑅𝑒−𝐴𝑅 cos 𝑤

which converges to 0 as 𝑅 → ∞. The third term is

∫
0

𝑅
𝑒−𝐴𝑡𝑒𝑖𝑤𝑒𝑖𝑤𝑑𝑡 = 𝑒𝑖𝑤 ∫

0

𝑅
𝑒−𝐴𝑡 cos 𝑤(cos(𝐴𝑡 sin 𝑤) − 𝑖 sin(𝐴𝑡 sin 𝑤))𝑑𝑡

= −𝑒𝑖𝑤 ∫
𝑅

0
𝑒−𝑎𝑡(cos(𝑏𝑡) − 𝑖 sin(𝑏𝑡))𝑑𝑡.

Therefore when 𝑅 → ∞, we get

∫
∞

0
𝑒−𝑎𝑡 cos(𝑏𝑡)𝑑𝑡 − ∫

∞

0
𝑒−𝑎𝑡 sin(𝑏𝑡)𝑑𝑡 = 1

𝐴
𝑒−𝑖𝑤 = 1

𝐴
( 𝑎

𝐴
− 𝑖 𝑏

𝐴
) = 𝑎

𝑎2 + 𝑏2 − 𝑖 𝑏
𝑎2 + 𝑏2 .

Hence

∫
∞

0
𝑒−𝑎𝑡 cos(𝑏𝑡)𝑑𝑡 = 𝑎

𝑎2 + 𝑏2 ,  ∫
∞

0
𝑒−𝑎𝑡 sin(𝑏𝑡)𝑑𝑡 = 𝑏

𝑎2 + 𝑏2 .

4. We will integrate the function 𝑒−𝜋𝑧2  along the curve below.

0 𝑅−𝑅

𝑅 − 𝑖𝜉−𝑅 − 𝑖𝜉

𝛾𝑅
𝛾−𝑅

Since 𝑒−𝜋𝑧2  is holomorphic in ℂ, by Cauchy’s theorem,

∫
𝑅

−𝑅
𝑒−𝜋𝑥2𝑑𝑥 + ∫

𝛾𝑅

𝑓(𝑧)𝑑𝑧 + ∫
−𝑅

𝑅
𝑒−𝜋(𝑥−𝑖𝜉)2𝑑𝑥 + ∫

𝛾−𝑅

𝑓(𝑧)𝑑𝑧 = 0.
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Integral over the real segment converges to ∫∞
−∞

𝑒−𝜋𝑥2𝑑𝑥 = 1. The second and fourth term converges
to 0, because the size of integrand becomes smaller proportionally to 𝑒−𝜋𝑅2 . The third term is

∫
−𝑅

𝑅
𝑒−𝜋(𝑥−𝑖𝜉)2𝑑𝑥 = ∫

−𝑅

𝑅
𝑒−𝜋𝑥2+2𝜋𝑖𝑥𝜉+𝜋𝜉2𝑑𝑥 = −𝑒𝜋𝜉2 ∫

𝑅

−𝑅
𝑒−𝜋𝑥2+2𝜋𝑖𝑥𝜉𝑑𝑥.

Let 𝑅 → ∞ and get

∫
∞

−∞
𝑒−𝜋𝑥2+2𝜋𝑖𝑥𝜉𝑑𝑥 = 𝑒−𝜋𝜉2 .

5. Let 𝑓 = 𝐹 + 𝑖𝐺. Since 𝑓  is holomorphic on Ω, 𝜕𝐹
𝜕𝑥 = 𝜕𝐺

𝜕𝑦  and 𝜕𝐹
𝜕𝑦 = −𝜕𝐺

𝜕𝑥  hold by Cauchy-Riemann
equation.

Also, by Green’s theorem,

∫
𝑇

𝐹  𝑑𝑥 − 𝐺 𝑑𝑦 = ∫
𝑇 ⚬

(−𝜕𝐺
𝜕𝑥

− 𝜕𝐹
𝜕𝑦

)𝑑𝑥𝑑𝑦 = ∫
𝑇 ⚬

0 𝑑𝑥𝑑𝑦 = 0,

∫
𝑇

𝐺 𝑑𝑥 + 𝐹  𝑑𝑦 = ∫
𝑇 ⚬

(𝜕𝐹
𝜕𝑥

− 𝜕𝐺
𝜕𝑦

)𝑑𝑥𝑑𝑦 = ∫
𝑇 ⚬

0 𝑑𝑥𝑑𝑦 = 0.

Hence

∫
𝑇

𝑓(𝑧)𝑑𝑧 = ∫
𝑇
(𝐹 + 𝑖𝐺)(𝑑𝑥 + 𝑖𝑑𝑦) = ∫

𝑇
𝐹  𝑑𝑥 − 𝐺 𝑑𝑦 + 𝑖 ∫

𝑇
𝐺 𝑑𝑥 + 𝐹  𝑑𝑦 = 0.

6. Consider the keyhole Γ𝛿,𝜀, where 𝛿 is the width of the corridor, and 𝜀 is the radius of small circle centered
at 𝑤.

𝛾𝜀

𝑇

𝑤

Γ𝛿,𝜀

By Cauchy’s theorem,

∫
Γ𝛿,𝜀

𝑓(𝑧)𝑑𝑧 = 0.

Since 𝑓  is continuous, letting 𝛿 → 0 gives

∫
𝑇

𝑓(𝑧)𝑑𝑧 = ∫
𝛾𝜀

𝑓(𝑧)𝑑𝑧.

because the integrals over the two sides of the corrider cancel out. However, 𝑓(𝑧) is bounded near 𝑤,
therefore

|∫
𝛾𝜀

𝑓(𝑧)𝑑𝑧| ≤ 2𝜋𝜀 ⋅ sup
|𝑧−𝑤|≤𝜀

|𝑓(𝑧)| → 0

as 𝜀 → 0. Hence we get

∫
𝑇

𝑓(𝑧)𝑑𝑧 = 0.
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7. Since 𝑓 : 𝔻 → ℂ is holomorphic,

𝑓 ′(0) = 1
2𝜋𝑖

∫
|𝜁|=𝑟

𝑓(𝜁)
𝜁2 𝑑𝜁

holds for 0 < 𝑟 < 1. Also, changing the variables 𝜁 ↦ −𝜁, then we get

𝑓 ′(0) = 1
2𝜋𝑖

∫
|𝜁|=𝑟

−𝑓(−𝜁)
𝜁2 𝑑𝜁.

Therefore

2|𝑓 ′(0)| = | 1
2𝜋𝑖

∫
|𝜁|=𝑟

𝑓(𝜁) − 𝑓(−𝜁)
𝜁2 𝑑𝜁.| ≤ 1

2𝜋
∫

|𝜁|=𝑟

|𝑓(𝜁) − 𝑓(−𝜁)|
|𝜁|2

𝑑𝜁

≤ 1
2𝜋

∫
|𝜁|=𝑟

𝑑
|𝜁|2

𝑑𝜁 = 1
2𝜋

⋅ 2𝜋𝑟 ⋅ 𝑑
𝑟2 = 𝑑

𝑟
.

Since 0 < 𝑟 < 1 is arbitrary,

2|𝑓 ′(0)| ≤ inf
0<𝑟<1

𝑑
𝑟

= 𝑑.

8. We fix integer 𝑛 and 𝑅 < 1. First consider the case 𝜂 ≥ 0. For 𝑥 ≥ 0, by Cauchy inequalities,

|𝑓 (𝑛)(𝑥)| ≤ 𝑛!
𝑅𝑛 sup

𝑧∈𝐶𝑅(𝑥)
|𝑓(𝑧)| = 𝑛!

𝑅𝑛 𝐴(1 + 𝑥 + 𝑅)𝜂.

Since

𝑛!
𝑅𝑛 𝐴(1 + 𝑥 + 𝑅)𝜂

(1 + 𝑥)𝜂 = 𝑛!
𝑅𝑛 𝐴(1 + 𝑅

1 + 𝑥
)

𝜂

→ 𝑛!
𝑅𝑛 𝐴

as 𝑛 → ∞, 𝑛!
𝑅𝑛 𝐴 (1+𝑥+𝑅)𝜂

(1+𝑥)𝜂  is bounded, therefore there exists constant 𝐴+
𝑛  such that

|𝑓 (𝑛)(𝑥)| ≤ 𝐴+
𝑛(1 + 𝑥)𝜂

for all 𝑥 ≥ 0. Similarly, for 𝑥 < 0,

|𝑓 (𝑛)(𝑥)| ≤ 𝑛!
𝑅𝑛 sup

𝑧∈𝐶𝑅(𝑥)
|𝑓(𝑧)| = 𝑛!

𝑅𝑛 𝐴(1 + 𝑥 − 𝑅)𝜂,

and

𝑛!
𝑅𝑛 𝐴(1 + 𝑥 − 𝑅)𝜂

(1 − 𝑥)𝜂 = 𝑛!
𝑅𝑛 (1 − 𝑅

𝑥 − 1
)

𝜂

→ 𝑛!
𝑅𝑛 𝐴

as 𝑛 → ∞, there exists constant 𝐴−
𝑛  such that

|𝑓 (𝑛)(𝑥)| ≤ 𝐴+
𝑛(1 − 𝑥)𝜂

for all 𝑥 < 0. Letting 𝐴𝑛 = max{𝐴−
𝑛 , 𝐴+

𝑛} completes the proof.

In the case of 𝜂 < 0, we divide ℝ into (−∞, −𝑅) ∪ [−𝑅, 𝑅] ∪ (𝑅, ∞). The case (−∞, −𝑅), (𝑅, ∞) is
similar to argument above, we can get 𝐴−

𝑛  and 𝐴+
𝑛 . When 𝑥 ∈ [−𝑅, 𝑅],

|𝑓 (𝑛)(𝑥)| ≤ 𝑛!
𝑅𝑛 𝐴.

Since the function
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𝑛!
𝑅𝑛 𝐴 1

(1 + |𝑥|)𝜂

is bounded in compact set [−𝑅, 𝑅], defining by

𝐴∗
𝑛 = sup

𝑥∈[−𝑅,𝑅]

𝑛!
𝑅𝑛 𝐴 1

(1 + |𝑥|)𝜂

gives

|𝑓 (𝑛)(𝑥)| ≤ 𝐴∗
𝑛(1 + |𝑥|)𝜂.

Now letting 𝐴𝑛 = max{𝐴−
𝑛 , 𝐴∗

𝑛, 𝐴+
𝑛} completes the proof.

9. We can assume 𝑧0 = 0. If not, consider the function 𝑓 : Ω − 𝑧0 → Ω − 𝑧0 which is defined by

𝑓(𝑧) = 𝜑(𝑧 + 𝑧0) − 𝑧0.

Since Ω − 𝑧0 is also bounded open subset of ℂ, and 𝑓(0) = 𝜑(𝑧0) − 𝑧0 = 0 and 𝑓 ′(0) = 𝜑′(𝑧0) = 1, we
can prove by assuming a special case where 𝑧0 = 0.

Let 𝜑(𝑧) = 𝑧 + 𝑎𝑛𝑧𝑛 + 𝑂(𝑧𝑛+1) and define 𝜑𝑘 = 𝜑 ⚬ ⋯ ⚬ 𝜑 (𝑘 times). Then we get

𝜑𝑘(𝑧) = 𝑧 + 𝑘𝑎𝑛𝑧𝑛 + 𝑂(𝑧𝑛+1)

by induction, because 𝑘 = 1 case is clearly true, and equation at 𝑘 = 𝑙 leads to

𝜑𝑙+1(𝑧) = 𝜑𝑙(𝜑(𝑧)) = 𝜑(𝑧) + 𝑙𝑎𝑛𝜑(𝑧)𝑛 + 𝑂(𝜑(𝑧)𝑛+1)

= 𝑧 + 𝑎𝑛𝑧𝑛 + 𝑂(𝑧𝑛+1) + 𝑙𝑎𝑛𝑧𝑛 + 𝑂(𝑧𝑛+1) + 𝑂(𝑧𝑛+1)

= 𝑧 + (𝑙 + 1)𝑎𝑛𝑧𝑛 + 𝑂(𝑧𝑛+1),

which is equation for 𝑘 = 𝑙 + 1. Use Cauchy inequalities to get

|𝜑(𝑛)
𝑘 (𝑧)| = 𝑘𝑛!𝑎𝑛 ≤ 𝑛!

𝑅𝑛 ‖𝑓‖𝐶

for appropriate 𝑅. Since Ω is bounded set, ‖𝑓‖𝐶  is bounded, therefore 𝑘 → ∞ leads to a contradiction.

10. No. Consider the continuous function 𝑓(𝑧) = Re(z). If series of polynomials {𝑃𝑛} uniformly converges
to 𝑓 , then

∫
𝜕𝔻

𝑃𝑛(𝑧)𝑑𝑧 → ∫
𝜕𝔻

𝑓(𝑧)𝑑𝑧

as 𝑛 → ∞. Note that ∫
𝜕𝔻

𝑃𝑛(𝑧)𝑑𝑧 = 0 for all 𝑛 ∈ ℕ. However,

∫
𝜕𝔻

𝑓(𝑧)𝑑𝑧 = ∫
2𝜋

0
Re(𝑒𝑖𝜃)𝑖𝑒𝑖𝜃𝑑𝜃 = 𝑖 ∫

2𝜋

0
(cos2 𝜃 + 𝑖 cos 𝜃 sin 𝜃)𝑑𝜃

= 𝑖 ∫
2𝜋

0
(1 + cos 2𝜃

2
+ 𝑖1

2
sin 2𝜃)𝑑𝜃 = 𝑖 ⋅ 1

2
⋅ 2𝜋 = 𝜋𝑖 ≠ 0

which is contradiction.

11. (a) Note that

𝑓(𝑧) = 1
2𝜋𝑖

∫
𝐶

𝑓(𝜁)
𝜁 − 𝑧

 𝑑𝜁,  0 = 1
2𝜋𝑖

∫
𝐶

𝑓(𝜁)
𝜁 − 𝑅2/𝑧

 𝑑𝜁.
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Also, by calculation,

𝜁
𝜁 − 𝑧

− 𝜁
𝜁 − 𝑅2/𝑧

= 𝜁
𝜁 − 𝑧

− 𝑧
𝑧 − 𝑅2/𝜁

= 𝜁
𝜁 − 𝑧

+ 𝑧
𝜁 − 𝑧

= Re(𝜁 + 𝑧
𝜁 − 𝑧

).

Therefore

𝑓(𝑧) = 1
2𝜋𝑖

∫
𝐶

( 𝑓(𝜁)
𝜁 − 𝑧

− 𝑓(𝜁)
𝜁 − 𝑅2/𝑧

)𝑑𝜁 = 1
2𝜋𝑖

∫
𝐶

𝑓(𝜁)
𝜁

( 𝜁
𝜁 − 𝑧

− 𝜁
𝜁 − 𝑅2/𝑧

)𝑑𝜁

= 1
2𝜋𝑖

∫
𝐶

𝑓(𝜁)
𝜁

Re(𝜁 + 𝑧
𝜁 − 𝑧

)𝑑𝜁 = 1
2𝜋𝑖

∫
2𝜋

0
𝑓(𝑅𝑒𝑖𝜑) Re(𝑅𝑒𝑖𝜑 + 𝑧

𝑅𝑒𝑖𝜑 − 𝑧
)𝑑𝜑.

(b)
Re(𝑅𝑒𝑖𝛾 + 𝑟

𝑅𝑒𝑖𝛾 − 𝑟
) = 1

2
(𝑅𝑒𝑖𝛾 + 𝑟

𝑅𝑒𝑖𝛾 − 𝑟
+ 𝑅𝑒−𝑖𝛾 + 𝑟

𝑅𝑒−𝑖𝛾 − 𝑟
)

= 1
2
( 2𝑅2 − 2𝑟2

𝑅2 + 𝑟2 − 𝑅𝑟(cos𝑖𝛾 +𝑒−𝑖𝛾)
) = 𝑅2 − 𝑟2

𝑅2 − 2𝑅𝑟 cos 𝛾 + 𝑟2 .

12. (a) Let

𝑔(𝑧) = 2𝜕𝑢
𝜕𝑧

= 𝜕𝑢
𝜕𝑥

− 𝑖𝜕𝑢
𝜕𝑦

.

Then 𝑔 is holomorphic in 𝔻 since it satisfies Cauchy-Riemann equations in 𝔻, indeed,

𝜕
𝜕𝑥

(𝜕𝑢
𝜕𝑥

) = 𝜕
𝜕𝑦

(−𝜕𝑢
𝜕𝑦

)  ∵ ∆𝑢 = 0,

𝜕
𝜕𝑦

(𝜕𝑢
𝜕𝑥

) = − 𝜕
𝜕𝑥

(−𝜕𝑢
𝜕𝑦

)  ∵ 𝑢 ∈ 𝒞2.

Hence there exists holomorphic function 𝐹  such that 𝐹 ′ = 𝑔 by Theorem 2.1. Let Re(𝐹) = 𝑈 . Then

𝐹 ′ = 2𝜕𝑈
𝜕𝑧

 ⇒  𝜕𝑈
𝜕𝑧

= 𝜕𝑢
𝜕𝑧

 ⇒  𝑈 = 𝑢 + 𝑐,

where 𝑐 ∈ ℝ is constant. Now define 𝑓 = 𝐹 − 𝑐 then

Re(𝑓) = Re(𝐹 − 𝑐) = 𝑈 − 𝑐 = 𝑢.

Also If 𝑓  and 𝑔 is a holomorphic function that satisfies the condition of problem, then

Re(𝑓 − 𝑔) = Re(𝑓) − Re(𝑔) = 𝑢 − 𝑢 = 0,

which is constant, therefore Im(𝑓 − 𝑔) is also constant by Exercise 13(a), Chapter 1.
(b) By (a), there exists holomorphic function 𝑓  such that Re(𝑓) = 𝑢. Put 𝑅 = 1, 𝑧 = 𝑒𝑖𝜃 in formula from

Exercise 11(a) to get

𝑢(𝑧) = Re(𝑓(𝑧)) = 1
2𝜋

∫
2𝜋

0
Re(𝑓(𝑒𝑖𝜑)) Re(𝑒𝑖𝜑 + 𝑟𝑒𝑖𝜃

𝑒𝑖𝜑 − 𝑟𝑒𝑖𝜃 )𝑑𝜑

= 1
2𝜋

∫
2𝜋

0
𝑢(𝑒𝑖𝜑) Re(𝑒𝑖(𝜑−𝜃) + 𝑟

𝑒𝑖(𝜑−𝜃) − 𝑟
)𝑑𝜑

= 1
2𝜋

∫
2𝜋

0
𝑃𝑟(𝜃 − 𝜑)𝑢(𝑒𝑖𝜑)𝑑𝜑.

13. Note that 𝑐𝑘 = 0 means 𝑓 (𝑘)(0) = 0 in the power series expansion below.
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𝑓(𝑧) = ∑
∞

𝑛=0
𝑐𝑛(𝑧 − 𝑧0)

𝑛

Now define sequence of sets {𝐴𝑘}∞
𝑘=1 as follows

𝐴𝑘 = {𝑧 ∈ ℂ :  𝑓 (𝑘)(𝑧) = 0}.

Since for each 𝑧0 ∈ ℂ, at least one coefficient is equal to 0, therefore there exists 𝑘 ∈ ℕ such that

𝑧𝑜 ∈ 𝐴𝑘.

Hence

⋃
∞

𝑘=1
𝐴𝑘 = ℂ.

If every 𝐴𝑘 are countable, then ℂ is countably infinite, which is contradiction. Therefore at least one 𝐴𝑘
is uncountable. Then there is a limit point of 𝐴𝑘 in ℂ. By Theorem 4.8, 𝑓 (𝑘)(𝑧) ≡ 0. Accordingly, 𝑓  is
polynomial of degree up to 𝑘 − 1.

14. Suppose 𝑓  has a pole of order 𝑘 at 𝑧0. By Theorem 1.3, Chapter 3,

𝑓(𝑧) = ( 𝑏−𝑘

(𝑧 − 𝑧0)
𝑘 + ⋯ + 𝑏−1

𝑧 − 𝑧0
) + 𝐺(𝑧),

where 𝐺(𝑧) is a holomorphic function in a neighborhood of 𝑧0. Since 𝑓  is holomorphic in an open set
containing the closed unit disc,

𝑓(𝑧) − ( 𝑏−𝑘

(𝑧 − 𝑧0)
𝑘 + ⋯ + 𝑏−1

𝑧 − 𝑧0
) = ∑

∞

𝑛=0
𝑐𝑛𝑧𝑛 (|𝑧| < 1 + 𝛿).

for small enough 𝛿. Note that ∑ 𝑐𝑛𝑧𝑛 converges for |𝑧| = 1, therefore 𝑐𝑛 → 0 as 𝑛 → ∞. By definition,

∑
∞

𝑛=0
𝑎𝑛𝑧𝑛 = ( 𝑏−𝑘

(𝑧 − 𝑧0)
𝑘 + ⋯ + 𝑏−1

𝑧 − 𝑧0
) + ∑

∞

𝑛=0
𝑐𝑛𝑧𝑛.

Note that

1
(𝑧 − 𝑧0)

𝑙 = ∑
∞

𝑛=0
(−1)𝑙(𝑙 + 𝑛 − 1

𝑙 − 1 )𝑧−𝑛−𝑙
0 𝑧𝑛 (|𝑧| < 1).

Therefore

∑
∞

𝑛=0
𝑎𝑛𝑧𝑛 = ∑

𝑘

𝑙=1
∑
∞

𝑛=0
(−1)𝑙(𝑙 + 𝑛 − 1

𝑙 − 1 )𝑧−𝑛−𝑙
0 𝑧𝑛 + ∑

∞

𝑛=0
𝑐𝑛𝑧𝑛.

Since equation above holds for all 𝑧 ∈ 𝔻, we get

𝑎𝑛 = 𝑐𝑛 + ∑
𝑘

𝑙=1
(−1)𝑙(𝑙 + 𝑛 − 1.𝑙 − 1)𝑧−𝑘−𝑙

0 .

Hence
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lim
𝑛→∞

𝑎𝑛
𝑎𝑛+1

= lim
𝑛→∞

𝑐𝑛 + ∑𝑘
𝑙=1 (−1)𝑙(𝑙+𝑛−1

𝑙−1 )𝑧−𝑛−𝑙
0

𝑐𝑛+1 + ∑𝑘
𝑙=1 (−1)𝑙(𝑙+𝑛

𝑙−1)𝑧−𝑛−𝑙−1
0

= lim
𝑛→∞

𝑐𝑛 ⋅ 1
𝑛𝑘−1 𝑧𝑛

0 + ∑𝑘
𝑙=1 (−1)𝑙 1

𝑛𝑘−1 (𝑙+𝑛−1
𝑙−1 )𝑧−𝑙

0

𝑐𝑛+1 ⋅ 1
𝑛𝑘−1 𝑧𝑛

0 + ∑𝑘
𝑙=1 (−1)𝑙 1

𝑛𝑘−1 (𝑙+𝑛
𝑙−1)𝑧−𝑙−1

0

= 𝑧−𝑙
0 /𝑧−𝑙−1

0 = 𝑧0.

15. This proof is made up of several steps.

Step 1. Define 𝑔 as

𝑔(𝑧) = {
𝑓(𝑧)  |𝑧| ≤ 1
1/𝑓(1/𝑧)  |𝑧| > 1

This is well-defined because 𝑓(𝑧) ≠ 0 for 𝑧 ∈ 𝔻, and obviously 𝑔 is continuous in ℂ.

Step 2. 𝑔 is bounded in ℂ. Since 𝑔 is continuous on compact set 𝔻, there exists positive number 𝑚, 𝑀
such that 𝑚 ≤ |𝑔(𝑧)| ≤ 𝑀  for 𝑧 ∈ 𝔻. therefore 1/𝑀 ≤ |𝑔(𝑧)| ≤ 1/𝑚 for |𝑧| > 1.

Step 3. 𝑔 is holomorphic in |𝑧| > 1, since 𝑔 satisfies Cauchy-Riemann equations in open region {𝑧 : |𝑧| >
1}. Let 𝑔(𝑥 + 𝑖𝑦) = 𝑢(𝑥.𝑦) + 𝑖𝑣(𝑥, 𝑦) for 𝑥 + 𝑖𝑦 ∈ 𝔻. Note that

𝜕𝑢
𝜕𝛼

= 𝜕𝑣
𝜕𝛽

,  𝜕𝑢
𝜕𝛽

= − 𝜕𝑣
𝜕𝛼

holds in 𝔻 because 𝑔 is holomorphic in 𝔻.

For 𝑥 + 𝑖𝑦 ∈ {𝑧 : |𝑧| > 1},

𝑔(𝑥 + 𝑖𝑦) = 1/𝑔(1/𝑥 + 𝑖𝑦) = 𝑢(𝛼, 𝛽)
𝑢(𝛼, 𝛽)2 + 𝑣(𝛼, 𝛽)2 + 𝑖 𝑣(𝛼, 𝛽)

𝑢(𝛼, 𝛽)2 + 𝑣(𝛼, 𝛽)2 ,

where 𝛼(𝑥, 𝑦) = 𝑥
𝑥2+𝑦2 , 𝛽(𝑥, 𝑦) = 𝑦

𝑥2+𝑦2 . Now compute the partial derivatives;

𝜕
𝜕𝑥

( 𝑢
𝑢2 + 𝑣2 ) = 𝜕𝑢

𝜕𝛼
( 𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2 (𝑣2 − 𝑢2) − 2𝑢𝑣 −2𝑥𝑦
(𝑥2 + 𝑦2)2 ) + 𝜕𝑢

𝜕𝛽
( −2𝑥𝑦

(𝑥2 + 𝑦2)2 (𝑣2 − 𝑢2) + 2𝑢𝑣 𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2 )

𝜕
𝜕𝑦

( 𝑣
𝑢2 + 𝑣2 ) = 𝜕𝑣

𝜕𝛽
( 𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2 (𝑢2 − 𝑣2) − 2𝑢𝑣 −2𝑥𝑦
(𝑥2 + 𝑦2)2 ) + 𝜕𝑣

𝜕𝛼
( −2𝑥𝑦

(𝑥2 + 𝑦2)2 (𝑢2 − 𝑣2) + 2𝑢𝑣 𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2 )

Therefore

𝜕
𝜕𝑥

( 𝑢
𝑢2 + 𝑣2 ) = 𝜕

𝜕𝑦
( 𝑣

𝑢2 + 𝑣2 ).

Also,

𝜕
𝜕𝑦

( 𝑢
𝑢2 + 𝑣2 ) = 𝜕𝑢

𝜕𝛽
( 𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2 (𝑣2 − 𝑢2) − 2𝑢𝑣 −2𝑥𝑦
(𝑥2 + 𝑦2)2 ) + 𝜕𝑢

𝜕𝛼
( −2𝑥𝑦

(𝑥2 + 𝑦2)2 (𝑣2 − 𝑢2) + 2𝑢𝑣 𝑥2 − 𝑦2

(𝑥2 + 𝑦2)2 )

𝜕
𝜕𝑥

( 𝑣
𝑢2 + 𝑣2 ) = 𝜕𝑣

𝜕𝛼
( 𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2 (𝑢2 − 𝑣2) − 2𝑢𝑣 −2𝑥𝑦
(𝑥2 + 𝑦2)2 ) + 𝜕𝑣

𝜕𝛽
( −2𝑥𝑦

(𝑥2 + 𝑦2)2 (𝑢2 − 𝑣2) + 2𝑢𝑣 𝑦2 − 𝑥2

(𝑥2 + 𝑦2)2 )

Therefore

𝜕
𝜕𝑦

( 𝑢
𝑢2 + 𝑣2 ) = − 𝜕

𝜕𝑥
( 𝑣

𝑢2 + 𝑣2 ).

Hence 𝑔 satisfies Cauchy-Riemann equations in {𝑧 : |𝑧| > 1}.
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Step 4. 𝑇  is any triangle that belongs to 𝔻, then

∫
𝑇

𝑔(𝑧)𝑑𝑧 = 0.

If 𝑇 ⊂ 𝔻, then result is trivial by Theorem 1.1. Now suppose one vertex of a triangle touches the
boundary of a circle. We split a triangle into multiple triangles. Let 𝑇 ∗ be the triangle that touches the
boundary of the circle.

𝑇

→

𝑇1

𝑇2

𝑇 ∗

Integral over other triangles is simply 0, therefore

∫
𝑇

𝑔(𝑧)𝑑𝑧 = ∫
𝑇 ∗

𝑔(𝑧)𝑑𝑧.

Since 𝑔 is bounded in compact set 𝔻, sending perimeter of 𝑇 ∗ to 0 gives

∫
𝑇

𝑔(𝑧)𝑑𝑧 = 0.

If more than two vertexes of a triangle touch the boundary of circle, we can show that integral over the
triangle is 0, by splitting to triangles which have only one intersection with circle.

Furthermore, we can see that integral over the triangle 𝑇 ∈ {𝑧 : |𝑧| ≥ 1} is also zero.

Step 5. 𝑔 is holomorphic in ℂ. We prove this by showing that ∫
𝑇

𝑔(𝑧)𝑑𝑧 = 0 for all triangles 𝑇 ∈ ℂ. The
first step is to convert an arbitrary triangle into an isosceles triangle of a certain shape by splitting it.

Suppose there are two intersection with 𝜕𝔻. The goal is a triangle with tangents at those intersections
as sides. This is easily attained by drawing tangents at each intersection.

𝜃

→ →

You can then draw a tangent line from the point where the circle meets the perpendicular bisector of the
straight line connecting the intersection, so split the triangle into smaller triangles with same shape.

→
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Repeat this 𝑛 times, then there are 2𝑛 triangles of this shape. Let 𝑚 = 2𝑛, and let’s call each triangle 𝛾𝑘
(1 ≤ 𝑘 ≤ 𝑚). Now we estimate integrals ∫

𝛾𝑘
𝑔(𝑧)𝑑𝑧.

𝑧1

𝑧2

ℎ

Let ℎ is a vector that represents height of 𝛾𝑘. Note that |ℎ| = sin2(𝜃/2𝑚) sec(𝜃/2𝑚) = 𝑂(1/𝑚2). Since
𝑓  is continuous on compact set 𝐷2, 𝑓  is uniformly continuous on 𝐷2. For every 𝜀 > 0, there exists 𝛿 >
0 such that |𝑧1 − 𝑧2| < 𝛿 ⇒ |𝑓(𝑧1) − 𝑓(𝑧2)| < 𝜀. Then

|∫
𝛾𝑘

𝑔(𝑧)𝑑𝑧| = |∫
1

0
𝑔(𝑧1 + 𝑡𝑤)𝑤𝑑𝑡

−(∫
1/2

0
𝑔(𝑧1 + 𝑡(𝑤 + 2ℎ))𝑤𝑑𝑡 + ∫

1

1/2
𝑔(𝑧1 + 𝑡𝑤 + 2(1 − 𝑡)ℎ)𝑤𝑑𝑡)|

≤ ∫
1/2

0
|𝑔(𝑧1 + 𝑡𝑤) − 𝑔(𝑧1 + 𝑡𝑤 + 2ℎ)||𝑤|𝑑𝑡

+ ∫
1

1/2
|𝑔(𝑧1 + 𝑡𝑤) − 𝑔(𝑧1 + 𝑡𝑤 + 2(1 − 𝑡)ℎ)||𝑤|𝑑𝑡

≤ 1
2
|𝑤|𝜀 + 1

2
|𝑤|𝜀 = sin( 𝜃

2𝑚
)𝜀.

Therefore

|∫
𝑇

𝑔(𝑧)𝑑𝑧| = |∑
𝑚

𝑘=1
∫

𝛾𝑘

𝑔(𝑧)𝑑𝑧| ≤ ∑
𝑚

𝑘=1
|∫

𝛾𝑘

𝑔(𝑧)𝑑𝑧| ≤ ∑
𝑚

𝑘=1
sin( 𝜃

2𝑚
)𝜀

= 𝑚 sin( 𝜃
2𝑚

)𝜀 < 𝑚 𝜃
2𝑚

𝜀 = 𝜃
2
𝜀

for small 𝜀 and large 𝑚. Hence ∫
𝑇

𝑔(𝑧)𝑑𝑧 = 0.

Step 6. Since 𝑔 is bounded and holomorphic in ℂ, 𝑔 is constant. 𝑓(𝑧) = 𝑔(𝑧) for 𝑧 ∈ 𝔻, so 𝑓  is also
constant.

Chapter 3. Meromorphic Functions and the Logarithm

1. The zeros of sin 𝜋𝑧 are

sin 𝜋𝑧 = 0 ⇒ 𝑒𝑖𝜋𝑧 = 𝑒−𝑖𝜋𝑧 ⇒ 𝑒2𝜋𝑖𝑧 = 1 ⇒ 𝑧 = 𝑛 (𝑛 ∈ ℤ).

and these are each of order 1 because

lim
𝑧→𝑛

sin 𝜋𝑧 − sin 𝜋𝑛
𝑧 − 𝑛

= 𝜋 cos 𝜋𝑧|𝑧=𝑛 = (−1)𝑛𝜋 ≠ 0.

Therefore the residue of 1
sin 𝜋𝑧  at 𝑧 = 𝑛 is

Res
𝑧=𝑛

1
sin 𝜋𝑧

= lim
𝑧→𝑛

(𝑧 − 𝑛) 1
sin 𝜋𝑧 − sin 𝜋𝑛

= (−1)𝑛

𝜋
.
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2. Integrate the function 1/(1 + 𝑧4) over the semicircle with radius 𝑅.

𝑅−𝑅

𝛾𝑅

Note that there are two simple poles of 1/(1 + 𝑧4) inside the semicircle, 𝑧 = 1+𝑖√
2 , −1+𝑖√

2 . By residue
formula,

∫
𝑅

−𝑅

1
1 + 𝑥4 𝑑𝑥 + ∫

𝛾𝑅

1
1 + 𝑧4 𝑑𝑧 = 2𝜋𝑖( Res

𝑧=1+𝑖√
2

1
1 + 𝑧4 + Res

𝑧=−1+𝑖√
2

1
1 + 𝑧4 ).

The integral over the arc is less than 2𝜋𝑅 ⋅ 1
𝑅4−1 , hence converges to 0. Now calculate residues.

Res
𝑧=1+𝑖√

2

1
1 + 𝑧4 = 1

(1+𝑖√
2 − −1+𝑖√

2 )(1+𝑖√
2 − 1−𝑖√

2 )(1+𝑖√
2 − −1−𝑖√

2 )

= 1√
2 ⋅

√
2𝑖 ⋅

√
2(1 + 𝑖)

= 1
2
√

2𝑖(1 + 𝑖)
,

Res
𝑧=−1+𝑖√

2

1
1 + 𝑧4 = 1

(−1+𝑖√
2 − 1+𝑖√

2 )(−1+𝑖√
2 − 1−𝑖√

2 )(−1+𝑖√
2 − −1−𝑖√

2 )

= 1
−

√
2 ⋅

√
2𝑖 ⋅

√
2(−1 + 𝑖)

= 1
2
√

2𝑖(1 − 𝑖)
.

Let 𝑅 → ∞ to get

∫
∞

−∞

1
1 + 𝑧4 𝑑𝑧 = 2𝜋𝑖 ⋅ 1

2
√

2
⋅ 1

𝑖
( 1

1 + 𝑖
+ 1

1 − 𝑖
) = 𝜋√

2
(1 + 𝑖 + 1 − 𝑖

1 − 𝑖2
) = 𝜋√

2
.

3. Integrate the function 𝑒𝑖𝑧/(𝑧2 + 𝑎2) over the semicircle of radius 𝑅.

𝑅−𝑅

𝛾𝑅

𝑎𝑖

−𝑎𝑖

By residue formula, we get

∫
𝑅

−𝑅

𝑒𝑖𝑥

𝑥2 + 𝑎2 𝑑𝑥 + ∫
𝛾𝑅

𝑒𝑖𝑧

𝑧2 + 𝑎2 𝑑𝑧 = 2𝜋𝑖 Res
𝑧=𝑎𝑖

𝑒𝑖𝑧

𝑧2 + 𝑎2 .

Note that if Im(𝑧) ≥ 0 then |𝑒𝑖𝑧| = 𝑒−Im(𝑧) ≤ 0. Therefore the integral over the arc is less than 2𝜋𝑅 ⋅
1

𝑅2−𝑎2 , which converges to 0. Also,
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Res
𝑧=𝑎𝑖

𝑒𝑖𝑧

𝑧2 + 𝑎2 = 𝑒𝑖⋅𝑎𝑖

𝑎𝑖 + 𝑎𝑖
= 𝑒−𝑎

2𝑎𝑖
.

Hence let 𝑅 → ∞ to get

∫
∞

−∞

𝑒𝑖𝑥

𝑥2 + 𝑎2 = 2𝜋𝑖 ⋅ 𝑒−𝑎

2𝑎𝑖
= 𝜋𝑒−𝑎

𝑎

and

∫
∞

−∞

cos 𝑥
𝑥2 + 𝑎2 = Re(∫

∞

−∞

𝑒𝑖𝑥

𝑥2 + 𝑎2 ) = 𝜋𝑒−𝑎

𝑎
.

4. Integrate the function 𝑧𝑒𝑖𝑧/(𝑧2 + 𝑎2) over the semicircle of radius 𝑅.

𝑅−𝑅

𝛾𝑅

𝑎𝑖

−𝑎𝑖

There is are only one simple pole 𝑧 = 𝑎𝑖 in the semicircle, hence by residue formula,

∫
𝑅

−𝑅

𝑥𝑒𝑖𝑥

𝑥2 + 𝑎2 𝑑𝑥 + ∫
𝛾𝑅

𝑧𝑒𝑖𝑧

𝑧2 + 𝑎2 𝑑𝑧 = 2𝜋𝑖 Res
𝑧=𝑎𝑖

𝑧𝑒𝑖𝑧

𝑧2 + 𝑎2 .

We now estimate the integral over the arc.

|∫
𝛾𝑅

𝑧𝑒𝑖𝑧

𝑧2 + 𝑎2 𝑑𝑧| = |∫
2𝜋

0

𝑅𝑒𝑖𝜃𝑒𝑖𝑅𝑒𝑖𝜃

𝑅2𝑒2𝑖𝜃 + 𝑎2 𝑖𝑅𝑒𝑖𝜃𝑑𝜃| ≤ ∫
2𝜋

0
| 𝑅𝑒𝑖𝜃𝑒𝑖𝑅𝑒𝑖𝜃

𝑅2𝑒2𝑖𝜃 + 𝑎2 𝑖𝑅𝑒𝑖𝜃|𝑑𝜃

= 𝑅2 ∫
2𝜋

0

𝑒−𝑅 sin 𝜃

|𝑅2𝑒2𝑖𝜃 + 𝑎2|
𝑑𝜃 ≤ 𝑅2

𝑅2 − 𝑎2 ∫
2𝜋

0
𝑒−𝑅 sin 𝜃𝑑𝜃

For large 𝑅, let 𝛿 = 𝑅−1/2 < 𝜋/2. Note that 𝜃 ∈ [𝛿, 𝜋 − 𝛿] then sin 𝜃 ≥ sin 𝛿.

∫
2𝜋

0
𝑒−𝑅 sin 𝜃𝑑𝜃 = ∫

𝛿

0
𝑒−𝑅 sin 𝜃𝑑𝜃 + ∫

𝜋−𝛿

𝛿
𝑒−𝑅 sin 𝜃𝑑𝜃 + ∫

𝜋

𝜋−𝛿
𝑒−𝑅 sin 𝜃𝑑𝜃

≤ 𝛿 ⋅ 1 + (𝜋 − 2𝛿)𝑒−𝑅 sin 𝛿 + 𝛿 ⋅ 1

= 2√
𝑅

+ (𝜋 − 2√
𝑅

)𝑒−𝑅 sin 1√
𝑅 ⟶⟶⟶⟶⟶⟶⟶

𝑅→∞
0.

Therefore let 𝑅 → ∞ to get

∫
∞

−∞

𝑥𝑒𝑖𝑥

𝑥2 + 𝑎2 𝑑𝑥 = 2𝜋𝑖 Res
𝑧=𝑎𝑖

𝑧𝑒𝑖𝑧

𝑧2 + 𝑎2 = 2𝜋𝑖 ⋅ 𝑎𝑖𝑒−𝑎

2𝑎𝑖
= 𝑖𝜋𝑒−𝑎

and

∫
∞

−∞

𝑥 sin 𝑥
𝑥2 + 𝑎2 𝑑𝑥 = Im(∫

∞

−∞

𝑥𝑒𝑖𝑥

𝑥2 + 𝑎2 𝑑𝑥) = 𝜋𝑒−𝑎.

24



5. When 𝜉 = 0, then changing the variables 𝑥 = tan 𝜃 to get

∫
∞

−∞

1
(1 + 𝑥2)2  𝑑𝑥 = ∫

𝜋/2

−𝜋/2

sec2 𝜃
sec4 𝜃

 𝑑𝜃 = ∫
𝜋/2

−𝜋/2
cos2 𝜃 𝑑𝜃 = ∫

𝜋/2

−𝜋/2

1 + cos 2𝜃
2

 𝑑𝜃 = 𝜋
2
.

Suppose 𝜉 > 0. Observe that Im(𝑧) ≤ 0 then |𝑒−2𝜋𝑖𝑥𝜉| = 𝑒2𝜋𝜉 Im(𝑧) ≤ 1. We integrate the function
𝑒−2𝜋𝑖𝑧𝜉/(1 + 𝑧2)2 over the lower semicircle of radius 𝑅.

𝑅−𝑅

𝛾𝑅

𝑖

−𝑖

contour when 𝜉 > 0

𝑅−𝑅

𝛾𝑅

𝑖

−𝑖

contour when 𝜉 < 0

Since there are pole of order 2 inside the curve, by residue formula,

∫
−𝑅

𝑅

𝑒−2𝜋𝑖𝑥𝜉

(1 + 𝑥2)2 𝑑𝑥 + ∫
𝛾𝑅

𝑒−2𝜋𝑖𝑧𝜉

(1 + 𝑧2)2 𝑑𝑧 = 2𝜋𝑖 Res
𝑧=−𝑖

𝑒−2𝜋𝑖𝑧𝜉

(1 + 𝑧2)2 .

We can easily see that integral over the arc tends to 0 as 𝑅 → ∞. Therefore

∫
∞

−∞

𝑒−2𝜋𝑖𝑥𝜉

(1 + 𝑥2)2 𝑑𝑥 = −2𝜋𝑖 Res
𝑧=−𝑖

𝑒−2𝜋𝑖𝑧𝜉

(1 + 𝑧2)2 = −2𝜋𝑖 lim
𝑧→−𝑖

𝑑
𝑑𝑧

( 𝑒−2𝜋𝑖𝑧𝜉

(𝑧 − 𝑖)2 )

= −2𝜋𝑖 lim
𝑧→−𝑖

−2𝜋𝑖𝜉𝑒−2𝜋𝑖𝑧𝜉(𝑧 − 𝑖)2 − 𝑒−2𝜋𝑖𝑧𝜉 ⋅ 2(𝑧 − 𝑖)
(𝑧 − 𝑖)4

= −2𝜋𝑖 ⋅ (−4𝜋𝜉 − 2)𝑒−2𝜋𝜉

8𝑖
= 𝜋

2
(1 + 2𝜋𝜉)𝑒−2𝜋𝜉.

Proof for case 𝜉 < 0 is similar to proof for case 𝜉 > 0. Integrate the function 𝑒−2𝜋𝑖𝑧𝜉/(1 + 𝑧2)2 over the
upper semicircle of radius 𝑅, and let 𝑅 → ∞ to get

∫
∞

−∞

𝑒−2𝜋𝑖𝑥𝜉

(1 + 𝑥2)2 𝑑𝑥 = 2𝜋𝑖 Res
𝑧=𝑖

𝑒−2𝜋𝑖𝑧𝜉

(1 + 𝑧2)2 = 2𝜋𝑖 lim
𝑧→−𝑖

𝑑
𝑑𝑧

( 𝑒−2𝜋𝑖𝑧𝜉

(𝑧 + 𝑖)2 )

= 2𝜋𝑖 ⋅ (4𝜋𝜉 − 2)𝑒2𝜋𝜉

−8𝑖
= 𝜋

2
(1 − 2𝜋𝜉)𝑒2𝜋𝜉 = 𝜋

2
(1 + 2𝜋|𝜉|)𝑒−2𝜋|𝜉|.

6. Integrate the function 1
(1+𝑧2)𝑛+1  over the upper semicircle.

𝑅−𝑅

𝛾𝑅

𝑖

−𝑖

By residue formula,
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∫
𝑅

−𝑅

1
(1 + 𝑥2)𝑛+1 𝑑𝑥 + ∫

𝛾𝑅

1
(1 + 𝑧2)𝑛+1 𝑑𝑧 = 2𝜋𝑖 Res

𝑧=𝑖

1
(1 + 𝑧2)𝑛+1 .

Obviously the integral over the arc goes to 0. Since 𝑧 = 𝑖 is pole of order 𝑛 + 1,

∫
∞

−∞

1
(1 + 𝑥2)𝑛+1 𝑑𝑥 = 2𝜋𝑖 Res

𝑧=𝑖

1
(1 + 𝑧2)𝑛+1 = 2𝜋𝑖 lim

𝑧→𝑖

1
𝑛!

( 𝑑
𝑑𝑧

)
𝑛

(𝑧 + 𝑖)−𝑛−1

= 2𝜋𝑖 lim
𝑧→𝑖

1
𝑛!

(−𝑛 − 1)(−𝑛 − 2)⋯(−𝑛 − 𝑛)(𝑧 + 𝑖)−𝑛−𝑛−1

= 2𝜋𝑖 ⋅ (2𝑛)!
(𝑛!)2 ⋅ 1

22𝑛+1 ⋅ 1
𝑖

= (2𝑛)!
(2𝑛𝑛!)2 ⋅ 𝜋

= 1 ⋅ 2 ⋅ ⋯ ⋅ (2𝑛)
(1 ⋅ 2 ⋅ ⋯ ⋅ 𝑛)2 ⋅ 𝜋 = 1 ⋅ 3 ⋅ 5 ⋅ ⋯ ⋅ (2𝑛 − 1)

2 ⋅ 4 ⋅ 6 ⋅ ⋯ ⋅ (2𝑛)
⋅ 𝜋.

7. We integrate the function 1/(𝑎 + cos 𝑧)2 over the rectangle below.

2𝜋

𝑅

𝛼2

𝛼1

Note that

1
(𝑎 + cos 𝑧)2 = 1

(𝑎 + 𝑒𝑖𝑧−𝑒−𝑖𝑧

2 )
2 = 4𝑒2𝑖𝑧

(𝑒2𝑖𝑧 + 2𝑎𝑒𝑖𝑧 + 1)2 = 4𝑒𝑖𝑧

(𝑒𝑖𝑧 − 𝑟1)
2(𝑒𝑖𝑧 − 𝑟2)

2

where

𝑟1 = −𝑎 −
√

𝑎2 − 1,  𝑟2 = −𝑎 +
√

𝑎2 − 1.

Now let

𝛼𝑖 = 𝜋 − ln(−𝑟𝑖)𝑖 for 𝑖 = 1, 2,

then 1/(𝑎 + cos 𝑧)2 have pole of order 2 at 𝑧 = 𝛼1, 𝛼2. By residue formula,

∫
2𝜋

0

1
(𝑎 + cos 𝑥)2 𝑑𝑥 + ∫

𝑅

0

1

(𝑎 + 𝑒2𝜋𝑖+𝑡+𝑒−2𝜋𝑖−𝑡

2 )
2 𝑖𝑑𝑡

+ ∫
0

2𝜋

1
𝑎 + cos(𝑡 + 𝑖𝑅)

𝑑𝑡 + ∫
0

𝑅

1

(𝑎 + 𝑒𝑡+𝑒−𝑡

2 )
2 𝑖𝑑𝑡 = 2𝜋𝑖 Res

𝑧=𝛼2

1
(𝑎 + cos 𝑧)2 .

The integral over the top side of rectangles goes to 0 as 𝑅 → ∞. The integrals over the vertical sides
cancel out. The residue is

Res
𝑧=𝛼2

1
(𝑎 + cos 𝑧)2 = lim

𝑧→𝛼2

𝑑
𝑑𝑧

((𝑧 − 𝛼2)
2 ⋅ 4𝑒2𝑖𝑧

(𝑒𝑖𝑧 − 𝑟1)
2(𝑒𝑖𝑧 − 𝑟2)

2 ) = 1
𝑖

⋅ 𝑎
(𝑎2 − 1)3/2 ,

hence
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∫
2𝜋

0

𝑑𝜃
(𝑎 + cos 𝜃)2 = 2𝜋𝑎

(𝑎2 − 1)3/2 .

8. We integrate the function 1/(𝑎 + 𝑏 cos 𝑧) over the rectangle below.

2𝜋

𝑅

𝛼2

𝛼1

Observe that

1
𝑎 + 𝑏 cos 𝑧

= 2𝑒𝑖𝑧

𝑏(𝑒𝑖𝑧 − 𝑟1)(𝑒𝑖𝑧 − 𝑟2)

where

𝑟1 = −𝑎
𝑏

− √(𝑎
𝑏
)

2
− 1,  𝑟2 = −𝑎

𝑏
+ √(𝑎

𝑏
)

2
− 1.

Similar to Exercise 7, the integral over the top side tends to 0 as 𝑅 → 0, and integrals over vertical sides
cancel out. Therefore the integral over the real segment equals to

2𝜋𝑖 Res
𝑧=𝛼2

1
𝑎 + 𝑏 cos 𝑧

= lim
𝑧→𝛼2

(𝑧 − 𝛼2)
2𝑒𝑖𝑧

𝑏(𝑒𝑖𝑧 − 𝑟1)(𝑒𝑖𝑧 − 𝑟2)

= lim
𝑧→𝛼2

2𝑒𝑖𝑧

𝑏(𝑒𝑖𝑧 − 𝑟1)
⋅ 𝑧 − 𝛼2
𝑒𝑖𝑧 − 𝑟2

= 2𝑟2
𝑏(𝑟2 − 𝑟1)

⋅ 1
𝑖𝑟2

= 2
𝑖𝑏(𝑟2 − 𝑟1)

= 1
𝑖
√

𝑎2 − 𝑏2

Hence

∫
2𝜋

0

𝑑𝜃
𝑎 + 𝑏 cos 𝜃

= 2𝜋√
𝑎2 − 𝑏2

.

9. Observe that

sin 𝜋𝑧 = (1 − 𝑒2𝜋𝑖𝑧)𝑒−𝜋𝑖𝑧(1
2
𝑖).

Since

−𝜋
2

< arg(1 − 𝑒2𝜋𝑖𝑧) < 𝜋
2
, −𝜋 < arg(𝑒−𝜋𝑖𝑧) < 0, arg( 𝑖

2
) = 𝜋

2
,

we get

log(sin 𝜋𝑧) = log(1 − 𝑒2𝜋𝑖𝑧) − 𝜋𝑖𝑧 + log(1
2
𝑖).

Therefore
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∫
1

0
log(sin 𝜋𝑥)𝑑𝑥 = ∫

1

0
log(1 − 𝑒2𝜋𝑖𝑥)𝑑𝑥 − ∫

1

0
𝜋𝑖𝑥𝑑𝑥 + ∫

1

0
log(1

2
𝑖)𝑑𝑥

= ∫
1

0
log(1 − 𝑒2𝜋𝑖𝑥)𝑑𝑥 − 𝑖𝜋

2
− log 2 + 𝑖𝜋

2

= ∫
1

0
log(1 − 𝑒2𝜋𝑖𝑥)𝑑𝑥 − log 2.

Now we integrate the function 𝑓(𝑧) = log(1 − 𝑒2𝜋𝑖𝑧) over the contour below.

1

𝑅

𝜀

𝜀

𝛾1

𝛾2
𝛾3

𝛾4

𝛾5

𝛾6

By Cauchy’s theorem,

∑
6

𝑘=1
∫

𝛾𝑘

𝑓(𝑧)𝑑𝑧 = 0.

Integrals over the vertical sides cancel out, and ∫
𝛾6

𝑓(𝑧)𝑑𝑧 → 0 as 𝑅 → ∞. Now we estimate the integral
over 𝛾2.

|∫
𝛾2

𝑓(𝑧)𝑑𝑧| = |∫
𝜋/2

0
log(1 − 𝑒2𝜋𝑖𝜀𝑒𝑖𝜃)𝑖𝜀𝑒𝑖𝜃𝑑𝜃| ≤ 𝜀 ∫

𝜋/2

0
|log(1 − 𝑒2𝜋𝑖𝜀𝑒𝑖𝜃)|𝑑𝜃

≤ 𝜀 ∫
𝜋/2

0
∑
∞

𝑛=1

1
𝑛

|𝑒2𝜋𝑖𝜀𝑒𝑖𝜃|𝑑𝜃 = 𝜀 ∫
𝜋/2

0
∑
∞

𝑛=1

1
𝑛

𝑒−2𝜋𝑛𝜀 sin 𝜃𝑑𝜃

= 𝜀 ∑
∞

𝑛=1

1
𝑛

∫
𝜋/2

0
𝑒−2𝜋𝑛𝜀 sin 𝜃𝑑𝜃

Let 𝑛𝜀 = ⌊ 8
𝜋3

1
𝜀2 ⌋ + 1. For 𝑛 > 𝑛𝜀, 𝛿 = 𝑛−1/3𝜀−2/3 < 𝜋/2, so

∫
𝜋/2

0
𝑒−2𝜋𝑛𝜀 sin 𝜃𝑑𝜃 = ∫

𝛿

0
𝑒−2𝜋𝑛𝜀 sin 𝜃𝑑𝜃 + ∫

𝜋/2

𝛿
𝑒−2𝜋𝑛𝜀 sin 𝜃𝑑𝜃

≤ 𝛿 + (𝜋
2

− 𝛿)𝑒−2𝜋𝑛𝜀 sin 𝛿 ≤ 𝛿 + (𝜋
2

− 𝛿)𝑒−4𝑛𝜀𝛿

≤ 𝑛−1/3𝜀−2/3 + 𝜋
2
𝑒−4𝑛2/3𝜀1/3 .

Hence

𝜀 ∑
∞

𝑛=1

1
𝑛

∫
𝜋/2

0
𝑒−2𝜋𝑛𝜀 sin 𝜃𝑑𝜃 ≤ 𝜀 ∑

𝑛𝜀−1

𝑛=1

𝜋
2𝑛

+ 𝜀 ∑
∞

𝑛=𝑛𝜀

1
𝑛

( 1
𝑛1/3 𝜀−2/3 + 𝜋

2
𝑒−4𝑛2/3𝜀1/3)

≤ 𝜋
2
𝜀(ln(𝑛𝜀 − 1) + 1) + 𝜀1/3𝜁(4/3) + 𝜋

2
𝜀 ∑

∞

𝑛=1

1
𝑛

𝑒−4𝑛2/3𝜀1/3 .

Note that
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∑
∞

𝑛=1
𝑒−𝑎𝑛3/2 ≤ ∑

∞

𝑛=1

1
1
2𝑎2𝑛4/3 = 2

𝑎2 𝜁(4/3).

Thus

∑
∞

𝑛=1

1
𝑛

𝑒−4𝑛2/3𝜀1/3 ≤ ∑
∞

𝑛=1
𝑒−4𝑛2/3𝜀1/3 ≤ 2

(4𝜀1/3)2 𝜁(4/3) = 1
8
𝜀−3/2𝜁(4/3).

As a consequence,

𝜋
2
𝜀(ln(𝑛𝜀 − 1) + 1) + 𝜀1/3𝜁(4/3) + 𝜋

2
𝜀 ∑

∞

𝑛=1

1
𝑛

𝑒−4𝑛2/3𝜀1/3

≤ 𝜋
2
𝜀(1 + ln( 8

𝜋3 ) − 2 ln 𝜀) + 𝑒1/3𝜁(4/3) + 𝜋
16

𝜀1/3𝜁(4/3) = 𝑂(𝜀1/3).

Therefore ∫
𝛾2

𝑓(𝑧)𝑑𝑧 → 0 as 𝜀 → 0. Similarly, ∫
𝛾4

𝑓(𝑧)𝑑𝑧 → 0. So we get

∫
1

0
log(1 − 𝑒2𝜋𝑖𝑥)𝑑𝑥 = 0

and

∫
1

0
log(sin 𝜋𝑥)𝑑𝑥 = − log 2.

10. We integrate the function 𝑓(𝑧) = log 𝑧
𝑧2+𝑎2  over the contour below.

𝑅−𝑅 𝜀−𝜀

𝛾𝑅

𝛾𝜀

𝑎𝑖

By residue formula,

∫
−𝜀

−𝑅
𝑓(𝑥)𝑑𝑥 + ∫

𝛾𝜀

𝑓(𝑧)𝑑𝑧 + ∫
𝑅

𝜀
𝑓(𝑥)𝑑𝑥 + ∫

𝛾𝑅

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖 Res
𝑧=𝑎𝑖

𝑓(𝑧).

We denote

𝐼 = ∫
𝑅

𝜀
𝑓(𝑥)𝑑𝑥.

Then

∫
−𝜀

−𝑅

log 𝑥
𝑥2 + 𝑎2 𝑑𝑥 = ∫

𝜀

𝑅

log(−𝑡)
𝑡2 + 𝑎2 (−𝑑𝑡) = ∫

𝑅

𝜀

log 𝑡 + 𝜋𝑖
𝑡2 + 𝑎2 𝑑𝑡 = 𝐼 + 𝜋𝑖 ⋅ 𝜋

2𝑎
.

The integral over the 𝛾𝑅 goes to 0 as 𝑅 → ∞ because

|∫
𝛾𝑅

𝑓(𝑧)𝑑𝑧| ≤ 2𝜋𝑅 ⋅ 𝐴 log 𝑅
𝑅2 − 𝑎2 → 0.

Also, integral over the 𝛾𝜀 goes to 0 as 𝜀 → 0 because
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∫
𝛾𝜀

log 𝑧
𝑧2 + 𝑎2 𝑑𝑧 = − ∫

𝜋

0

log(𝜀𝑒𝑖𝜃)
𝜀2𝑒2𝑖𝜃 + 𝑎2 𝑖𝜀𝑒𝑖𝜃𝑑𝜃 = − ∫

𝜋

0

log 𝜀 + 𝑖𝜃
𝜀2𝑒2𝑖𝜃 + 𝑎2 𝑖𝜀𝑒𝑖𝜃𝑑𝜃

= −𝑖(𝜀 log 𝜀 ∫
𝜋

0

𝑒𝑖𝜃

𝜀2𝑒2𝑖𝜃 + 𝑎2 𝑑𝜃 + 𝑖𝜀 ∫
𝜋

0

𝜃𝑒𝑖𝜃

𝜀2𝑒2𝑖𝜃 + 𝑎2 𝑑𝜃) → 0.

Therefore taking the limits 𝑅 → ∞, 𝜀 → 0 gives

2𝐼 + 𝜋2

2𝑎
𝑖 = 2𝜋𝑖 Res

𝑧=𝑎𝑖

log 𝑧
𝑧2 + 𝑎2 = 2𝜋𝑖 ⋅

log 𝑎 + 𝜋
2 𝑖

2𝑎𝑖
= 𝜋log 𝑎

𝑎
+ 𝜋2

2𝑎
𝑖.

Hence

∫
∞

0

log 𝑥
𝑥2 + 𝑎2 𝑑𝑥 = 𝜋

2𝑎
log 𝑎.

11. First, we can assume 𝑎 > 0. Otherwise, if 𝑎 = 𝑎′𝑒𝑖𝜑 (𝑎′ > 0, 𝜑 ∈ (0, 2𝜋)), we can make it equal to the
case 𝑎 > 0 by doing the following;

∫
2𝜋

0
log|1 − 𝑎′𝑒𝑖(𝜃−𝜑)|𝑑𝜃 = ∫

2𝜋+𝜑

𝜑
log|1 − 𝑎′𝑒𝑖𝜃|𝑑𝜃 = ∫

2𝜋

0
log|1 − 𝑎′𝑒𝑖𝜃|𝑑𝜃.

Now define

𝑓(𝑎) = ∫
2𝜋

0
log|1 − 𝑎𝑒𝑖𝜃|𝑑𝜃,

then

𝑓(𝑎) = ∫
2𝜋

0
log √(1 − 𝑎 cos 𝜃)2 + (𝑎 sin 𝜃)2𝑑𝜃

= ∫
2𝜋

0

1
2

log(1 − 2𝑎 cos 𝜃 + 𝑎2)𝑑𝜃 = ∫
𝜋

0
log(1 − 2𝑎 cos 𝜃 + 𝑎2)𝑑𝜃.

we are going to calculate the derivative of 𝑓  in respect to 𝑎.

𝑓 ′(𝑎) = ∫
𝜋

0

𝜕
𝜕𝑎

log(1 − 2𝑎 cos 𝜃 + 𝑎2)𝑑𝜃 = ∫
𝜋

0

−2 cos 𝜃 + 2𝑎
1 − 2𝑎 cos 𝜃 + 𝑎2 𝑑𝜃

= 2(∫
𝜋/2

0

𝑎 − cos 𝜃
1 − 2𝑎 cos 𝜃 + 𝑎2 𝑑𝜃 + ∫

𝜋/2

0

𝑎 + cos 𝜃
1 + 2𝑎 cos 𝜃 + 𝑎2 𝑑𝜃)

= 4 ∫
𝜋/2

0

𝑎 + 𝑎3 − 2𝑎 cos2 𝜃
(1 + 𝑎2)2 − 4𝑎2 cos2 𝜃

𝑑𝜃

=
2(𝑎4 − 1)

𝑎
∫

𝜋/2

0

1
(1 + 𝑎2)2 − 4𝑎2 cos2 𝜃

𝑑𝜃 + 4 ∫
𝜋/2

0

1
2𝑎

𝑑𝜃

By changing the variables 𝑡 = tan 𝜃,

∫
𝜋/2

0

1
(1 + 𝑎2)2 − 4𝑎2 cos2 𝜃

𝑑𝜃 = ∫
𝜋/2

0

sec2 𝜃
(1 + 𝑎2)2 tan2 𝜃 + (1 − 𝑎2)2 𝑑𝜃

= ∫
∞

0

1
(1 + 𝑎2)2𝑡2 + (1 − 𝑎2)2 𝑑𝑡 = 1

(1 + 𝑎2)2 ⋅ 1 + 𝑎2

|1 − 𝑎2|
⋅ 𝜋
2
.

Hence 𝑓 ′(𝑎) = 0 for all 0 < 𝑎 < 1. Since 𝑓(0) = 0, 𝑓(𝑎) = 0 for all 0 < 𝑎 < 1. In the case of 𝑎 = 1,

30



∫
𝜋

0
log(2 − 2 cos 𝜃)𝑑𝜃 = ∫

𝜋

0
log(4 sin2 𝜃

2
)𝑑𝜃 = 2 ∫

𝜋

0
log(2 sin 𝜃

2
)𝑑𝜃

= 2(𝜋 log 2 + ∫
𝜋

0
log sin 𝜃

2
𝑑𝜃)

= 4(𝜋 log 2
2

+ ∫
𝜋/2

0
log sin 𝑡 𝑑𝑡)

which is 0 by Exercise 9.

12. We integrate the function 𝑓(𝑧) = 𝜋 cot 𝜋𝑧/(𝑢 + 𝑧)2 over the circle of radius 𝑁 + 1/2, centered at 0.
Observe that 𝑧 = 𝑛 (−𝑁 ≤ 𝑛 ≤ 𝑁) are simple poles, and 𝑧 = −𝑢 is pole of order 2. By residue formula,

∫
2𝜋

0

𝜋 cot(𝜋𝑅𝑁𝑒𝑖𝜃)
(𝑢 + 𝑅𝑁𝑒𝑖𝜃)2 𝑖𝑅𝑁𝑒𝑖𝜃𝑑𝜃 = 2𝜋𝑖( ∑

𝑁

𝑛=−𝑁
Res
𝑧=𝑛

𝑓(𝑧) + Res
𝑧=−𝑢

𝑓(𝑧)).

First, the integral over the circle goes to 0 as 𝑅𝑁 → ∞. This is because cot(𝜋𝑅𝑁𝑒𝑖𝜃) is bounded for
large 𝑁 . Note that

|cot 𝑧| = |cos 𝑧
sin 𝑧

| = |𝑒
𝑖𝑧 + 𝑒−𝑖𝑧

𝑒𝑖𝑧 − 𝑒−𝑖𝑧 | ≤ 𝑒𝑦 + 𝑒−𝑦

|𝑒𝑦 − 𝑒−𝑦|

where 𝑧 = 𝑥 + 𝑖𝑦. If Im(𝑧) ≥ 1, then

|cot 𝑧| ≤ 𝑒𝑦 + 𝑒−𝑦

𝑒𝑦 − 𝑒−𝑦 = 1 + 2
𝑒2𝑦 − 1

≤ 1 + 2
𝑒2 − 1

.

Similarly, |cot 𝑧| is bounded for Im(𝑧) ≤ −1. Now consider |Im(𝑧)| < 1. Since |𝑧| = 𝜋𝑅𝑁 , we can choose
𝑁  large enough so

|Im(𝑧)| < 1 ⇒  𝜋𝑁 + 𝜋/4 < Re(𝑧) ≤ 𝜋𝑁 + 𝜋/2.

This leads to

|sin(𝑧)| = 1
2
|cos 𝑥(𝑒−𝑦 − 𝑒𝑦) + 𝑖 sin 𝑥(𝑒𝑦 + 𝑒−𝑦)| ≥ 1

2
|sin 𝑥||𝑒𝑦 + 𝑒−𝑦| ≥ 1√

2
.

and

|cos(𝑧)| = 1
2
(𝑒𝑦 + 𝑒−𝑦) ≤ 𝑒 + 𝑒−1

2
,

so

|cot 𝑧| ≤ 𝑒 + 𝑒−1
√

2
.

Hence cot(𝜋𝑅𝑒𝑖𝜃) is bounded for all 𝜃 ∈ [0, 2𝜋]. Moreover,

Res
𝑧=𝑛

𝑓(𝑧) = lim
𝑧→𝑛

𝜋
(𝑢 + 𝑛)2 ⋅ 𝑖(𝑒2𝜋𝑖𝑛 + 1) ⋅ 𝑧 − 𝑛

𝑒2𝜋𝑖𝑧 − 𝑒2𝜋𝑖𝑛 = 1
(𝑢 + 𝑛)2 ,

Res
𝑧=−𝑢

𝑓(𝑧) = lim
𝑧→−𝑢

(𝜋 cot 𝜋𝑧)′ = −𝜋2 csc2 𝜋𝑢.

Therefore taking the limit 𝑁 → ∞ gives

∑
∞

𝑛=−∞

1
(𝑢 + 𝑛)2 = 𝜋2

(sin 𝜋𝑢)2 .

31



13. Let 𝑔(𝑧) = (𝑧 − 𝑧0)𝑓(𝑧). Observe that

|𝑔(𝑧)| = |𝑧 − 𝑧0||𝑓(𝑧)| ≤ |𝑧 − 𝑧0|
𝜀

converges to 0 when 𝑧 → 𝑧0, therefore 𝑔 is bounded on punctured disc 𝐷𝑟(𝑧0) − {𝑧0}. By Riemann’s
theorem on removable singularities, 𝑧0 is a removable singularity of 𝑔. Hence 𝑔 can be extended to
holomorphic function on 𝐷𝑟(𝑧0), which is

𝑔(𝑧) = 𝑎0 + 𝑎1(𝑧 − 𝑧0) + 𝑎2(𝑧 − 𝑧0)
2 + ⋯.

However, 𝑔(𝑧) → 0 as 𝑧 → 𝑧0, we get 𝑎0 = 0. So

𝑓(𝑧) = 𝑎1 + 𝑎2(𝑧 − 𝑧0) + ⋯

near the 𝑧0. Then 𝑓  is also bounded near 𝑧0, therefore 𝑧0 is removable singularity of 𝑓 .

14. We are going to determine the type of singularity of function 𝑓(1/𝑧) at 𝑧 = 0.

First suppose that 𝑓(1/𝑧) has removable singularity at 𝑧 = 0. Then |𝑓(1/𝑧)| is bounded in |𝑧| < 𝛿, so
|𝑓(𝑧)| is bounded in |𝑧| ≥ 1/𝛿. Since 𝑓  is holomorphic and bounded in ℂ, 𝑓  is constant this is contra-
diction with the fact that 𝑓  in injective.

Next, we suppose 𝑓(1/𝑧) has essential singularity. By Casorati-Weierstrass Theorem, image of 𝐷𝑟(0) −
{0} by 𝑧 ↦ 𝑓(1/𝑧) is dense in ℂ. Now fix 𝜀 < 1/𝑟 and consider 𝑓(0) ∈ ℂ. Since 𝑓  is open mapping,
there exists 𝛿 > 0 such that

𝐷𝛿(𝑓(0)) ⊂ 𝑓(𝐷𝜀(0)).

Also, there exists |𝑧0| < 𝑟 such that

|𝑓( 1
𝑧0

) − 𝑓(0)| < 𝛿,   that is,  𝑓( 1
𝑧0

) ∈ 𝐷𝛿(𝑓(0)).

Hence there exists 𝑧1 ∈ 𝐷𝜀(0) such that 𝑓(𝑧1) = 𝑓(1/𝑧0), which is contradiction.

Therefore 𝑓(1/𝑧) has pole at 𝑧 = 0, and we can write

𝑓(1
𝑧
) = 𝑎−𝑘

𝑧𝑘 +
𝑎−𝑘+1
𝑧𝑘−1 + ⋯ + 𝑎−1

𝑧
+ 𝐺(𝑧),

where 𝐺(𝑧) is bounded near 0. Hence

𝑓(𝑧) = 𝑎−𝑘𝑧𝑘 + 𝑎−𝑘+1𝑧𝑘−1 + ⋯ + 𝑎−1𝑧 + 𝐻(𝑧),

where 𝐻(𝑧) = 𝐺(1/𝑧) is bounded as |𝑧| → ∞. Since 𝐻  is holomorphic and bounded in ℂ, it’s constant.
Hence 𝑓  is a polynomial of degree 𝑘.

𝑘 must be less than 2 to be injective; Otherwise, according to the fundamental theorem of algebra,
it would have more than one zero and would not be a injective function. Even if 𝑓  has one zero of
multiplicity 𝑘, so 𝑓(𝑧) = (𝑧 − 𝑧0)

𝑘, it cannot be injective because

𝑓(𝑧0 + 𝑒2𝜋𝑖/𝑘) = 𝑓(𝑧0 + 𝑒4𝜋𝑖/𝑘).

Therefore 𝑓(𝑧) = 𝑎𝑧 + 𝑏 (𝑎 ≠ 0).

15. (a) By Cauchy inequalities, for each 𝑛 ≥ 𝑘 + 1,

|𝑓 (𝑛)(0)| ≤ 𝑛!
𝑅𝑛 sup

|𝑧|=𝑅
|𝑓(𝑧)| ≤ 𝑛! ⋅ 𝐴𝑅𝑘 + 𝐵

𝑅𝑛 → 0
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as 𝑅 → ∞. Therefore 𝑓 (𝑛)(0) = 0 for all 𝑛 ≥ 𝑘 + 1, and 𝑓  is polynomial of degree ≤ 𝑘.
(b) Let 0 < 𝛼 < 𝜑 − 𝜃 and 𝑚 be a minimal natural number such that 𝑚𝛼 > 2𝜋. Also, define 𝑀 =

sup𝑧∈𝔻|𝑓(𝑧)|. Now define

𝑔(𝑧) = 𝑓(𝑧)𝑓(𝑧𝑒𝑖𝛼)𝑓(𝑧𝑒𝑖2𝛼) ⋯ 𝑓(𝑧𝑒𝑖𝑚𝛼).

Since 𝑓  is converges uniformly to zero in the sector 𝜃 < arg 𝑧 < 𝜑, for all 𝜀 > 0, there exists 𝛿 > 0
such that

𝑟 > 𝛿 ⇒  |𝑓(𝑟𝑒𝑖𝑡)| < 𝜀 (∀𝑡 ∈ (𝜃, 𝜑)).

We prove that 𝑔 uniformly converges to zero as 𝑟 → 1. For any 𝑧 = 𝑟𝑒𝑖𝑡, there exists 𝑘 such that 𝜃 <
𝑡 + 𝑘𝛼 < 𝜑, so |𝑓(𝑟𝑒𝑖𝑡𝑒𝑖𝑘𝛼)| < 𝜀. Therefore

|𝑔(𝑧)| ≤ 𝑀𝑚|𝑓(𝑧𝑒𝑖𝑘𝛼)| < 𝑀𝑚𝜀.

Hence 𝑔 uniformly converges to zero as 𝑟 → 1. By maximum modulus principle,

sup
𝑧∈𝐷𝑟

|𝑔(𝑧)| ≤ sup
𝑧∈𝐶𝑟

|𝑔(𝑧)| → 0 as  𝑟 → 1,

which means 𝑔(𝑧) = 0.

Now we show that there is sequence {𝑧𝑛} such that 𝑓(𝑧𝑛) = 0 and 𝑧𝑛 → 0. Since

𝑔(1
𝑛

) = 𝑓(1
𝑛

)𝑓(1
𝑛

𝑒𝑖𝛼) ⋯ 𝑓(1
𝑛

𝑒𝑖𝑚𝛼) = 0,

𝑓( 1
𝑛𝑒𝑖𝑘𝑛𝛼) = 0 for at least one 𝑘𝑛. Let 𝑧𝑛 = 1

𝑛𝑒𝑖𝑘𝑛𝛼. Observe that |𝑧𝑛| = 1/𝑛 → 0. By Theorem
4.8, Chapter 2, 𝑓(𝑧) = 0.

(c) Define 𝑓(𝑧) = (𝑧 − 𝑤1) ⋯ (𝑧 − 𝑤𝑛). We have to show that |𝑓(𝑧)| ≥ 1 for at least one 𝑧 ∈ 𝜕𝔻. By
Cauchy inequalities,

𝑛! = |𝑓 (𝑛)(0)| ≤ 𝑛!
1𝑛 sup

𝑧∈𝜕𝔻
|𝑓(𝑧)|.

Therefore sup𝑧∈𝜕𝔻|𝑓(𝑧)| ≥ 1. Since 𝜕𝔻 is compact, 𝑓(𝑧) attains its maximum in unit circle, therefore
max𝑧∈𝜕𝔻|𝑓(𝑧)| ≥ 1. This completes the proof.

Also, by intermediate value theorem on 𝑔(𝑧) = 𝑓(𝑒𝑖𝜃), there exists 𝑧 such that |𝑓(𝑧)| is exactly equal
to 1.

(d) Observe that |𝑒𝑓 | = 𝑒Re(𝑓). Therefore if Re(𝑓) is bounded, then 𝑒𝑓  is also bounded. Since 𝑒𝑓  is
bounded and holomorphic in ℂ, it is constant. Thus 𝑓  is also constant.

16. (a) Note that 𝑓  has unique solution 𝑧 = 0 in 𝔻. Now we want to take small enough 𝜀 > 0 such that

|𝑓(𝑧)| > 𝜀|𝑔(𝑧)|

for all |𝑧| = 1. This is possible if we choose 𝜀 such that

𝜀 <
inf|𝑧|=1|𝑓(𝑧)|
sup|𝑧|=1|𝑔(𝑧)|

.

Note that sup|𝑧|=1|𝑔(𝑧)| exists because 𝑔(𝑧) is bounded on compact set 𝔻. Also, since {𝑧 : |𝑧| = 1} is
compact, we can say that inf|𝑧|=1|𝑓(𝑧)| = min|𝑧|=1|𝑓(𝑧)| > 0. By Rouché’s theorem, 𝑓(𝑧) + 𝜀𝑔(𝑧) =
0 also has unique solution in 𝔻.

(b) Fix small enough 𝜀0 > 0. We want to prove that for every 𝜉 > 0, there exists 𝛿 > 0 such that

for all 𝜀 > 0,  |𝜀 − 𝜀0| < 𝛿 ⇒  |𝑧𝜀 − 𝑧𝜀0
| < 𝜉.
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Note that

𝑓𝜀(𝑧) = 𝑓(𝑧) + 𝜀𝑔(𝑧) = 𝑓(𝑧) + 𝜀0𝑔(𝑧) + (𝜀 − 𝜀0)𝑔(𝑧).

Since |𝑧𝜀0
| < 1, for every small enough 𝜉 > 0, there is only one zero of 𝑓(𝑧) + 𝜀0𝑔(𝑧) in 𝐷𝜉(𝑧𝜀0

).
Now take 𝛿 > 0 such that

|𝜀 − 𝜀0| < 𝛿 ⇒  |𝑓(𝑧) + 𝜀0𝑔(𝑧)| > |𝜀 − 𝜀0||𝑔(𝑧)|  for 𝑧 ∈ 𝐶𝜉(𝑧𝜀0
).

This is possible similar to argument in (a). By Rouché’s theorem, 𝑓(𝑧) + 𝜀𝑔(𝑧) = 0 has unique zero
in 𝐷𝜉(𝑧𝜀0

), and that is equal to 𝑧𝜀. Hence |𝑧𝜀 − 𝑧𝜀0
| < 𝜉.

17. (a) Since |𝑓(𝑧)| = 1 and |𝑤0| < 1 in unit circle, by Rouché’s theorem, 𝑓(𝑧) = 𝑤0 has a root in 𝔻
whenever 𝑓(𝑧) = 0 has a root in 𝔻. Hence it suffices to show that 𝑓(𝑧) = 0 has a root.

Suppose 𝑓(𝑧) = 0 has no root, so |𝑓(𝑧)| > 0 for all 𝑧 ∈ 𝔻. By maximum modulus principle,

|𝑓(𝑧)| ≤ sup
𝑧∈𝔻

|𝑓(𝑧)| ≤ sup
𝑧∈𝔻−𝔻

|𝑓(𝑧)| = 1,

| 1
𝑓(𝑧)

| ≤ sup
𝑧∈𝔻

| 1
𝑓(𝑧)

| ≤ sup
𝑧∈𝔻−𝔻

| 1
𝑓(𝑧)

| = 1.

Hence |𝑓(𝑧)| = 1 for all 𝑧 ∈ 𝔻. By Exercise 13, Chapter 1, 𝑓(𝑧) is also constant, which is contra-
diction.

(b) Suppose there is no 𝑧 ∈ 𝔻 such that 𝑓(𝑧) = 0. By maximum modulus principle,

| 1
𝑓(𝑧)

| ≤ sup
𝑧∈𝔻

| 1
𝑓(𝑧)

| ≤ sup
𝑧∈𝔻−𝔻

| 1
𝑓(𝑧)

| ≤ 1.

So |𝑓(𝑧)| ≥ 1 for all 𝑧 ∈ 𝔻. But |𝑓(𝑧0)| < 1, which is contradiction.

18. Pick any two points 𝑧𝜀 ∈ 𝐶𝜀(𝑧), 𝑧𝑅 ∈ 𝐶𝑅(𝑧) on the circle and consider the two curves. First one is the
circle centered at 𝑧 of radius 𝑅, that is, 𝛾0(𝑡) = 𝑅𝑒2𝜋𝑖𝑡 (0 ≤ 𝑡 ≤ 1). Second, 𝛾1(𝑡) : [0, 1] → 𝐷𝑅(𝑧) is
equal to line segment 𝑧𝑅𝑧𝜀 for 0 ≤ 𝑡 < 1/3, the circle 𝐶𝜀(𝑧) for 1/3 < 𝑡 ≤ 2/3, the line segment 𝑧𝜀𝑧𝑅
for 2/3 ≤ 𝑡 ≤ 1.

𝑧 𝑧𝜀 𝑧𝑅

𝛾0 = 𝐶𝑅

𝛾1

Since 𝛾0 and 𝛾1 is homotopic, we get

∫
𝐶𝑅

𝑓(𝜁)
𝜁 − 𝑧

𝑑𝜁 = ∫
𝛾1

𝑓(𝜁)
𝜁 − 𝑧

𝑑𝜁.

The integral over the line segment canceled so

∫
𝛾1

𝑓(𝜁)
𝜁 − 𝑧

𝑑𝜁 = ∫
𝐶𝜀

𝑓(𝜁)
𝜁 − 𝑧

𝑑𝜁.

Observe that (𝑓(𝜁) − 𝑓(𝑧))/(𝜁 − 𝑧) is bounded near 𝑧, hence
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∫
𝐶𝜀

𝑓(𝜁)
𝜁 − 𝑧

𝑑𝜁 = ∫
𝐶𝜀

𝑓(𝜁) − 𝑓(𝑧)
𝜁 − 𝑧

𝑑𝜁 + 𝑓(𝑧) ∫
𝐶𝜀

1
𝜁 − 𝑧

𝑑𝜁 → 0 + 𝑓(𝑧) ⋅ 2𝜋𝑖

as 𝜀 → 0. Therefore

𝑓(𝑧) = 1
2𝜋𝑖

∫
𝐶𝑅

𝑓(𝜁)
𝜁 − 𝑧

𝑑𝜁.

19. (a) Let 𝑓  be holomorphic near 𝑧0 with 𝑢 = Re(𝑓). Since 𝑓  is an open mapping, 𝑓(𝐷𝑟(𝑧0)) is open for
small enough 𝑟 > 0. So there exists 𝑧1 ∈ 𝐷𝑟(𝑧0) such that Re(𝑓(𝑧1)) > Re(𝑓(𝑧0)), so 𝑢 cannot have
local maximum at 𝑧0.

(b) 𝑢 is continuous function, so |𝑢(𝑧)| have maximum at Ω. But 𝑢 cannot have maximum in Ω by (a).
Hence given inequality holds.

20. (a) By mean-value property,

𝑓(𝑧) = 1
2𝜋

∫
2𝜋

0
𝑓(𝑧 + 𝑟𝑒𝑖𝜃)𝑑𝜃.

Therefore

𝜋𝑡2𝑓(𝑧) = ∫
𝑡

0
2𝜋𝑓(𝑧)𝑟𝑑𝑟 = ∫

𝑟

0
∫

2𝜋

0
𝑓(𝑧 + 𝑟𝑒𝑖𝜃)𝑟𝑑𝜃𝑑𝑟 = ∫

𝐷𝑡(𝑧)
𝑓(𝑥 + 𝑖𝑦)𝑑𝑥𝑑𝑦

whenever 𝑓  is holomorphic in a disc 𝐷𝑡(𝑧). Note that for every 𝑧 ∈ 𝐷𝑠(𝑧0), 𝐷𝑟−𝑠(𝑧) ∈ 𝐷𝑟(𝑧0). Now
we set 𝑡 = 𝑟 − 𝑠, then

|𝑓(𝑧)| = 1
𝜋𝑡2

|∫
𝐷𝑡(𝑧)

𝑓(𝑧)𝑑𝑥𝑑𝑦| ≤ 1
𝜋𝑡2 √

√√
√

(∫
𝐷𝑡(𝑧)

|𝑓(𝑧)|2𝑑𝑥𝑑𝑦)(∫
𝐷𝑡(𝑧)

1 𝑑𝑥𝑑𝑦)

= 1√
𝜋𝑡√

∫
𝐷𝑡(𝑧)

|𝑓(𝑧)|2𝑑𝑥𝑑𝑦 ≤ 1√
𝜋𝑡√

∫
𝐷𝑟(𝑧0)

|𝑓(𝑧)|2𝑑𝑥𝑑𝑦

= 1√
𝜋𝑡

‖𝑓‖𝐿2(𝐷𝑟(𝑧0)).

Hence

‖𝑓‖𝐿∞(𝐷𝑠(𝑧0)) = sup
𝑧∈𝐷𝑠(𝑧0)

|𝑓(𝑧)| ≤ 1√
𝜋(𝑟 − 𝑠)

‖𝑓‖𝐿2(𝐷𝑟(𝑧0)).

(b) Let 𝑑 be a distance between 𝐾 and 𝑈∁. Since both 𝐾 and 𝑈∁ are close sets, 𝑑 > 0. Now

‖𝑓‖𝐿∞(𝐾) = 1√
𝜋(𝑑/2)

‖𝑓‖𝐿2(𝑈)

holds for all holomorphic 𝑓 . Therefore

‖𝑓𝑛 − 𝑓𝑚‖𝐿∞(𝐾) = 1√
𝜋(𝑑/2)

‖𝑓𝑓 − 𝑓𝑚‖
𝐿2(𝑈)

< 2√
𝜋𝑑

𝜀

for large 𝑛, 𝑚. Hence {𝑓𝑛} converges to a function 𝑓 . Note that {𝑓𝑛} uniformly converges to
𝑓  because of inequality above. Since each 𝑓𝑛 are holomorphic, and 𝑓𝑛 ⇉ 𝑓 , 𝑓  is a holomorphic
function.

21. (a) Suppose 𝛾0(𝑡), 𝛾1(𝑡) are two curves lying in Ω, then we can define 𝛾𝑠(𝑡) by
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𝛾𝑠(𝑡) = (1 − 𝑠)𝛾0(𝑡) + 𝑠𝛾1(𝑡).

Since 𝛾0(𝑡), 𝛾1(𝑡) ∈ Ω, by the definition of convex set, 𝛾𝑠(𝑡) ∈ Ω. Hence Ω is simply connected set.
(b) Suppose 𝛾0(𝑡), 𝛾1(𝑡) : [0, 1]2 → Ω are two curves lying in Ω. We define 𝛾𝑠(𝑡) as

𝛾𝑠(𝑡) =

{{
{{
{{
{𝛼𝛾0(𝑢) + (1 − 𝛼)𝑧0 for 𝑡 ∈ [0, 1/2] ∧  𝑠 ∈ [0, 1/2]

𝛼𝛾0(1 − 𝑢) + (1 − 𝛼)𝑧0 for 𝑡 ∈ (1/2, 1] ∧  𝑠 ∈ [0, 1/2]
𝛼𝛾1(−𝑢) + (1 − 𝛼)𝑧0 for 𝑡 ∈ [0, 1/2] ∧  𝑠 ∈ (1/2, 1]
𝛼𝛾1(1 + 𝑢) + (1 − 𝛼)𝑧0 for 𝑡 ∈ (1/2, 1] ∧  𝑠 ∈ (1/2, 1]

where

𝛼(𝑠, 𝑡) = √cos2 𝜋𝑡 + (1 − 2𝑠)2 sin2 𝜋𝑡,

 𝑢(𝑠, 𝑡) = 1
𝜋

arcsin( (1 − 2𝑠) sin 𝜋𝑡
√cos2 𝜋𝑡 + (1 − 2𝑠)2 sin2 𝜋𝑡

).

Since Ω is star-shaped set with star center 𝑧0, 𝛾𝑠(𝑡) ∈ Ω. Hence Ω is simply connected set.
(c) A horseshoe shaped region.

22. Suppose that there is a holomorphic function 𝑓  satisfying such a condition. Then for all 0 < 𝑟 < 1,

∫
𝜕𝐷𝑟(0)

𝑓(𝑧)𝑑𝑧 = 0

since 𝑓  is holomorphic in 𝔻. However,

∫
𝜕𝔻

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖

since 𝑓(𝑧) = 1/𝑧 for 𝑧 ∈ 𝜕𝔻. Taking a limit 𝑟 → 1−, we get a contradiction.

Chapter 4. The Fourier Transform

1. (a) By definition of Fourier transform,

𝐴(𝜉) − 𝐵(𝜉) = ∫
∞

−∞
𝑓(𝑥)𝑒−2𝜋𝑖𝜉(𝑥−𝑡)𝑑𝑥 = 𝑒2𝜋𝑖𝜉𝑡𝑓(𝜉) = 0.

So 𝐴(𝜉) = 𝐵(𝜉) for all 𝜉 ∈ ℝ.
(b) First we prove that 𝐴(𝑧) is holomorphic in upper half-plane. Define

𝐴𝑛(𝑧) = ∫
𝑡

−𝑛
𝑓(𝑥)𝑒−2𝜋𝑖𝑧(𝑥−𝑡)𝑑𝑥.

Since 𝑓(𝑥)𝑒−2𝜋𝑖𝑧(𝑥−𝑡) is holomorphic for each 𝑥 and continuous in [−𝑛, 𝑡] × {𝑧 : 𝑧 > 0}, 𝐴𝑛(𝑧) is
holomorphic. Also, 𝐴𝑛(𝑧) uniformly converges to 𝐴(𝑧) in any compact subset 𝐾 of {𝑧 : 𝑧 > 0}
because

|𝐴𝑛(𝑧) − 𝐴(𝑧)| = |∫
−𝑛

−∞
𝑓(𝑥)𝑒−2𝜋𝑖𝑧(𝑥−𝑡)𝑑𝑥| ≤ ∫

−𝑛

−∞
|𝑓(𝑥)|𝑑𝑥.

Therefore 𝐴(𝑧) is holomorphic. Similarly, 𝐵(𝑧) is holomorphic in {𝑧 : 𝑧 < 0}. Since 𝐴(𝜉) = 𝐵(𝜉)
for all 𝜉 ∈ ℝ, by Schwarz reflection principle, a function 𝐹  defined by
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𝐹(𝑧) = {𝐴(𝑧) for Im(𝑧) ≥ 0,
𝐵(𝑧) for Im(𝑧) < 0

is holomorphic in ℂ. Note that

|𝐴(𝑧)| ≤ ∫
𝑡

−𝑛
|𝑓(𝑥)|𝑑𝑥 ≤ ∫

𝑡

−∞
|𝑓(𝑥)|𝑑𝑥,

|𝐵(𝑧)| ≤ ∫
𝑛

𝑡
|𝑓(𝑥)|𝑑𝑥 ≤ ∫

∞

𝑡
|𝑓(𝑥)|𝑑𝑥.

So 𝐹  is bounded. Since 𝐹  is holomorphic and bounded, it is constant. In particular, 𝐴(𝑖𝑦) → 0 as
𝑦 → ∞ thus 𝐹(𝑧) = 0.

(c) For all 𝑡 ∈ ℝ,

∫
𝑡

−∞
𝑓(𝑥)𝑑𝑥 = 𝐹(0) = 0.

Hence ∫𝑡2

𝑡1
𝑓(𝑥)𝑑𝑥 = 0 for any 𝑡1, 𝑡2 ∈ ℝ. If 𝑓(𝑥) is not identically zero, then there exists 𝑥0 such

that 𝑓(𝑥0) ≠ 0. Suppose 𝑓(𝑥0) > 0. (The case 𝑓(𝑥0) < 0 is proved similarly.) Since 𝑓  is continuous,
there exists 𝛿 > 0 such that

|𝑥 − 𝑥0| < 𝛿 ⇒ |𝑓(𝑥) − 𝑓(𝑥0)| > 1
2
|𝑓(𝑥0)| ⇒ 𝑓(𝑥) > 1

2
𝑓(𝑥0).

Then

∫
𝑥0+𝛿

𝑥0−𝛿
𝑓(𝑥)𝑑𝑥 > ∫

𝑥0+𝛿

𝑥0−𝛿

1
2
𝑓(𝑥0)𝑑𝑥 = 𝛿𝑓(𝑥0) > 0,

which is contradiction.

2. The case of 𝑏 = 0 is trivial. Suppose 0 < 𝑏 < 𝑎. Since 𝑓 (𝑛) is holomorphic in 𝑆𝑏 ⊂ 𝑆𝑎, using Cauchy
inequality gives

|𝑓 (𝑛)(𝑥 + 𝑖𝑦)| ≤ 𝑛!
𝑅𝑛 sup

𝑧∈𝐶𝑅(𝑧+𝑖𝑦)
|𝑓(𝑧)| ≤ 𝑛!

𝑅𝑛
𝐴

1 + (|𝑥| + 𝑅)2 ≤ 𝑛!
𝑅𝑛

𝐴′

1 + 𝑥2

for all (𝑥, 𝑦) ∈ ℝ × (−𝑏, 𝑏), where 𝑅 = (𝑏 − 𝑎)/2.

3. The case of 𝜉 = 0 is simple. If 𝜉 > 0, we integrate the function 𝑓(𝑧) = 𝑎
𝑎2+𝑧2 𝑒−2𝜋𝑖𝑧𝜉 over the lower

semicircle of radius 𝑅.

𝑅−𝑅

𝛾𝑅

𝑎𝑖

−𝑎𝑖

contour when 𝜉 > 0

𝑅−𝑅

𝛾𝑅

𝑎𝑖

−𝑎𝑖

contour when 𝜉 < 0

By residue formula,
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− ∫
𝑅

−𝑅
𝑓(𝑥)𝑑𝑥 + ∫

𝛾𝑅

𝑓(𝑧)𝑑𝑧 = 2𝜋𝑖 Res
𝑧=−𝑎𝑖

𝑓(𝑧).

Note that |𝑒−2𝜋𝑖𝑧𝜉| ≤ 0 whenever Im(𝜉) ≤ 0, so integral over the semicircle goes to 0 as 𝑅 → ∞. Hence

∫
∞

−∞
𝑓(𝑥)𝑑𝑥 = −2𝜋𝑖 Res

𝑧=−𝑎𝑖
𝑓(𝑧) = −2𝜋𝑖 ⋅ 𝑎

−2𝑎𝑖
𝑒−2𝜋𝑖(−𝑎𝑖)𝜉 = 𝜋𝑒−2𝜋𝑎𝜉 = 𝜋𝑒−2𝜋𝑎|𝜉|.

Conversely, if 𝜉 < 0, then integrate the function 𝑓(𝑧) over the upper semicircle. Similarly to argument
above, the integral over the semicircle tends to 0 thus

∫
∞

−∞
𝑓(𝑥)𝑑𝑥 = 2𝜋𝑖 Res

𝑧=𝑎𝑖
𝑓(𝑧) = 2𝜋𝑖 ⋅ 𝑎

2𝑎𝑖
𝑒−2𝜋𝑖(𝑎𝑖)𝜉 = 𝜋𝑒2𝜋𝑎𝜉 = 𝜋𝑒−2𝜋𝑎|𝜉|.

Therefore

1
𝜋

∫
∞

−∞

𝑎
𝑎2 + 𝑥2 𝑒−2𝜋𝑖𝑥𝜉𝑑𝑥 = 𝑒−2𝜋𝑎|𝜉|.

By the Fourier inversion formula, we get

∫
∞

−∞
𝑒−2𝜋𝑎|𝜉|𝑒2𝜋𝑖𝜉𝑥𝑑𝜉 = 1

𝜋
𝑎

𝑎2 + 𝑥2 .

4. Let’s say {𝑤𝑘} be the roots of 𝑄 in the upper half-plane, and {𝑧𝑘} be the roots of 𝑄 in the lower half-
plane. Similar to Exercise 3, we can integrate the function 𝑓(𝑧) = 𝑒−2𝜋𝑖𝑧𝜉/𝑄(𝑧) over the appropriate
semicircle to obtain a integral.

𝑅−𝑅

𝛾𝑅

𝑧2𝑧1

contour when 𝜉 > 0

𝑅−𝑅

𝛾𝑅

𝑤2
𝑤1

contour when 𝜉 < 0

For the case 𝜉 > 0, integrate the function 𝑓(𝑧) over the lower semicircle and take 𝑅 → ∞ to get

∫
∞

−∞

𝑒−2𝜋𝑖𝑥𝜉

𝑄(𝑥)
𝑑𝑥 = −2𝜋𝑖 ∑

𝑧𝑘

Res
𝑧=𝑧𝑘

𝑒−2𝜋𝑖𝑧𝜉

𝑄(𝑧)
= −2𝜋𝑖 ∑

𝑧𝑘

lim
𝑧→𝑧𝑘

𝑧 − 𝑧𝑘
𝑄(𝑧)

𝑒−2𝜋𝑖𝑧𝜉

= −2𝜋𝑖 ∑
𝑧𝑘

𝑒−2𝜋𝑖𝑧𝑘𝜉

𝑄′(𝑧𝑘)
.

Otherwise, if 𝜉 < 0, integrate the function 𝑓(𝑧) over the upper semicircle and take 𝑅 → ∞ to get

∫
∞

−∞

𝑒−2𝜋𝑖𝑥𝜉

𝑄(𝑥)
𝑑𝑥 = 2𝜋𝑖 ∑

𝑤𝑘

Res
𝑧=𝑤𝑘

𝑒−2𝜋𝑖𝑧𝜉

𝑄(𝑧)
= 2𝜋𝑖 ∑

𝑤𝑘

lim
𝑧→𝑤𝑘

𝑧 − 𝑤𝑘
𝑄(𝑧)

𝑒−2𝜋𝑖𝑧𝜉

= 2𝜋𝑖 ∑
𝑤𝑘

𝑒−2𝜋𝑖𝑤𝑘𝜉

𝑄′(𝑤𝑘)
.

Finally, if 𝜉 = 0, we just get
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∫
∞

−∞

1
𝑄(𝑥)

𝑑𝑥 = 1̂/𝑄(0).

Even if several roots coincide, we can simply find the residue of the that poles and add it.

5. (a) Similar to Exercise 4, just integrate the function 𝑓(𝑧) = 𝑅(𝑧)𝑒−2𝜋𝑖𝑥𝜉 in the upper semicircle with
radius 𝑅 and take a limit 𝑅 → ∞ to get

∫
∞

−∞
𝑅(𝑥)𝑒−2𝜋𝑖𝑥𝜉𝑑𝑥 = 2𝜋𝑖 ∑

𝑘

𝑗=1
Res
𝑧=𝛼𝑗

𝑅(𝑧)𝑒−2𝜋𝑖𝑧𝜉.

Let 𝑚𝑗 = mul(𝛼𝑗), then

Res
𝑧=𝛼𝑗

𝑅(𝑧)𝑒−2𝜋𝑖𝑧𝜉 = 1
(𝑚𝑗 − 1)!

lim
𝑧→𝛼𝑗

( 𝑑
𝑑𝑧

)
𝑚𝑗−1

(𝑃(𝑧)
𝑄(𝑧)

𝑒−2𝜋𝑖𝑧𝜉(𝑧 − 𝛼𝑗)
𝑚𝑗)

= 𝑃𝑗(𝜉)𝑒−2𝜋𝑖𝛼𝑗𝜉.

This completes the proof.
(b) If 𝑄(𝑧) has no zeros in the upper half-plane, then there are no residues to add up, so the integral is

simply 0.
(c) Denote the zeros of 𝑓(𝑧) in the lower half-plane as {𝛽𝑗}. Then integrating the function 𝑓(𝑧) over

the upper semicircle of radius 𝑅 and taking 𝑅 → ∞ gives

∫
∞

−∞
𝑅(𝑥)𝑒−2𝜋𝑖𝑥𝜉𝑑𝑥 = ∑

𝑧=𝛽𝑗

𝑄𝑗(𝜉)𝑒−2𝜋𝑖𝛽𝑗𝜉,

Where 𝑄𝑗 is a polynomial of degree less than the multiplicity of 𝛽𝑗.
(d) Since |𝑒−2𝜋𝑖𝛼𝑗𝜉| = 𝑒−2𝜋Im(𝛼𝑖)|𝜉| for 𝜉 < 0 , and |𝑒−2𝜋𝑖𝛽𝑗𝜉| = 𝑒−2𝜋Im(−𝛽𝑗)|𝜉| for 𝜉 > 0, 𝑎 has to satisfy

the inequality

𝑎 < 2𝜋 min({Im(𝛼𝑗) ∪ Im(−𝛽𝑗)}) = 2𝜋 min{|Im(𝛾𝑗)|}

where the {𝛾𝑗} is the zeros of 𝑄.

6. Define 𝑓(𝑧) = 1
𝜋

𝑎
𝑎2+𝑧2 . By Exercise 3, we know that 𝑓(𝜉) = 𝑒−2𝜋𝑎|𝜉|. By substituting 𝑓  and 𝑓  to the

Poisson summation formula

∑
𝑛∈ℤ

𝑓(𝑛) = ∑
𝑛∈ℤ

𝑓(𝑛),

we get

1
𝜋

∑
∞

𝑛=−∞

𝑎
𝑎2 + 𝑛2 = ∑

∞

𝑛=−∞
𝑒−2𝜋𝑎|𝑛|.

In addition,

∑
∞

𝑛=−∞
𝑒−2𝜋𝑎|𝑛| = 1 + 2 ∑

∞

𝑛=1
𝑒−2𝜋𝑎𝑛 = 1 + 2 𝑒−2𝜋𝑎

1 − 𝑒−2𝜋𝑎 = 𝑒2𝜋𝑎 + 1
𝑒2𝜋𝑎 − 1

= coth 𝜋𝑎.

7. (a) Define 𝑓(𝑧) = 1/(𝜏 + 𝑧)𝑘. We want to calculate

𝑓(𝜉) = ∫
∞

−∞

1
(𝜏 + 𝑥)𝑘 𝑒−2𝜋𝑖𝑥𝜉𝑑𝑥.
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If 𝜉 > 0, then we integrate the function 𝑒−2𝜋𝑖𝑧𝜉/(𝜏 + 𝑧)𝑘 over the lower semicircle of radius 𝑅.

𝑅−𝑅

𝛾𝑅

−𝜏

Since |𝑒−2𝜋𝑖𝑧𝜉| ≤ 1 whenever Im(𝑧) ≤ 0, the integral over the arc goes to 0 as 𝑅 → ∞. By residue
formula,

𝑓(𝜉) = −2𝜋𝑖 Res
𝑧=−𝜏

𝑒−2𝜋𝑖𝑧𝜉

(𝜏 + 𝑧)𝑘 = −2𝜋𝑖 ⋅ 1
(𝑘 − 1)!

( 𝑑
𝑑𝑧

)
𝑘−1

(𝑒−2𝜋𝑖𝑧𝜉) = (−2𝜋𝑖)𝑘

(𝑘 − 1)!
⋅ 𝜉𝑘−1𝑒−2𝜋𝑖𝑧𝜉.

However, if 𝜉 < 0, we integrate the function over the upper semicircle. Since there is no poles inside
the contour, the integral is

𝑓(𝜉) = 0.

Simply 𝑓(0) is also 0. Therefore by Poisson summation formula,

∑
∞

𝑛=−∞

1
(𝜏 + 𝑛)𝑘 = (−2𝜋𝑖)𝑘

(𝑘 − 1)!
∑
∞

𝑚=1
𝜉𝑘−1𝑒−2𝜋𝑖𝑧𝜉.

(b) Set 𝑘 = 2 then the right hand side becomes

(−2𝜋𝑖)2 ∑
∞

𝑚=1
𝑚𝑒2𝜋𝑖𝑚𝜏 .

Since

∑
∞

𝑚=1
𝑒2𝜋𝑖𝑚𝜏 = 𝑒2𝜋𝑖𝜏

1 − 𝑒2𝜋𝑖𝜏 ,

differentiate both sides to obtain

2𝜋𝑖 ∑
∞

𝑚=1
𝑚𝑒2𝜋𝑖𝑚𝜏 = 2𝜋𝑖 𝑒−2𝜋𝜏𝑖

(1 − 𝑒−2𝜋𝜏𝑖)2 .

Therefore

∑
∞

𝑛=−∞

1
(𝜏 + 𝑛)2 = −4𝜋2 ∑

∞

𝑚=1
𝑚𝑒2𝜋𝑖𝑚𝜏 = −4𝜋2 ⋅ 1

(𝑒𝜋𝜏𝑖 − 𝑒−𝜋𝜏𝑖)2 = 𝜋2

sin2(𝜋𝜏)
.

(c) The case Im(𝜏) = 0 is proved via taking the limit Im(𝜏) → 0. If Im(𝜏) < 0, then Im(−𝜏) > 0 so

∑
∞

𝑛=−∞

1
(−𝜏 + 𝑛)2 = 𝜋2

sin2(−𝜋𝜏)
.

Therefore

∑
∞

𝑛=−∞

1
(𝜏 + 𝑛)2 = ∑

∞

𝑛=−∞

1
(𝜏 − 𝑛)2 = ∑

∞

𝑛=−∞

1
(−𝜏 + 𝑛)2 = 𝜋2

sin2(−𝜋𝜏)
= 𝜋2

sin2(𝜋𝜏)
.

8. By the Fourier inversion formula,
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𝑓(𝑥) = ∫
𝑀

−𝑀
𝑓(𝜉)𝑒2𝜋𝑖𝑥𝜉𝑑𝜉 ⇒  𝑓 (𝑛)(𝑥) = ∫

𝑀

−𝑀
𝑓(𝜉)𝑒2𝜋𝑖𝑥𝜉(2𝜋𝑖𝜉)𝑛𝑑𝜉.

Therefore

𝑎𝑛 = 1
𝑛!

𝑓 (𝑛)(0) = 1
𝑛!

(2𝜋𝑖)𝑛 ∫
𝑀

−𝑀
𝑓(𝜉)𝜉𝑛𝑑𝜉.

|𝑓| is continuous in [−𝑀, 𝑀] so bounded, hence there exists 𝐴 > 0 such that |𝑓| ≤ 𝐴. Then

𝑛!|𝑎𝑛| ≤ (2𝜋)𝑛 ∫
𝑀

−𝑀
|𝑓(𝜉)||𝜉𝑛|𝑑𝜉 ≤ (2𝜋)𝑛𝐴 ∫

𝑀

−𝑀
|𝜉|𝑛𝑑𝜉 = (2𝜋)𝑛𝐴 ⋅ 2 ⋅ 1

𝑛 + 1
𝑀𝑛+1

and

(𝑛!|𝑎𝑛|)1/𝑛 ≤ 2𝜋𝑀 ⋅ (2𝐴𝑀
𝑛 + 1

)
1/𝑛

.

Therefore

lim sup
𝑛→∞

(𝑛!|𝑎𝑛|)1/𝑛 ≤ 2𝜋𝑀.

Conversely, now suppose 𝑓  be any power series 𝑓(𝑧) = ∑∞
𝑛=0 𝑎𝑛𝑧𝑛 with

lim sup
𝑛→∞

(𝑛!|𝑎𝑛|)1/𝑛 ≤ 2𝜋𝑀.

Then for every 𝜀 > 0, there exists 𝑁 ∈ ℕ such that

𝑛 > 𝑁 ⇒  (𝑛!|𝑎𝑛|)1/𝑛 ≤ 2𝜋(𝑀 + 𝜀).

First observe that |𝑎𝑛|1/𝑛 ≤ 2𝜋(𝑀 + 𝜀)/(𝑛!)1/𝑛 → 0 as 𝑛 → ∞, so radius of convergence of 𝑓  is ∞.
Also,

|𝑓(𝑧)| ≤ ∑
𝑁

𝑛=0
|𝑎𝑛||𝑧|𝑛 + ∑

∞

𝑛=𝑁+1

(2𝜋(𝑀 + 𝜀))𝑛

𝑛!
|𝑧|𝑛

≤ ∑
𝑁

𝑛=0
|𝑎𝑛||𝑧|𝑛 + 𝑒2𝜋(𝑀+𝜀)|𝑧|.

Since the rate of growth of ∑𝑁
𝑛=0|𝑎𝑛||𝑧|𝑛 is no more than an polynomial of degree ≤ 𝑁 , there exists

𝐴𝜀 > 0 such that

|𝑓(𝑧)| ≤ 𝐴𝜀𝑒2𝜋(𝑀+𝜀)|𝑧|.

9. (a) This is special case of (b) with 𝛽 = 1.
(b) We define

𝐹𝜀(𝑧) = 𝐹(𝑧)𝑒−𝜀𝑧𝛾 ,

where 𝛼 < 𝛾 < 𝛽. Note that 𝑧𝛾  means

𝑧 = 𝑟𝑒𝑖𝜃 ⇒  𝑧𝛾 = 𝑟𝛾𝑒𝑖𝛾𝜃.

Since −𝜋/2𝛽 < 𝜃 < 𝜋/2𝛽 obtains

−𝜋
2

< −𝜋
2

𝛾
𝛽

< 𝛾𝜃 < 𝜋
2

𝛾
𝛽

< 𝜋
2
,

cos(𝛾𝜃) > 0 for all 𝑧 = 𝑟𝑒𝑖𝜃 ∈ 𝑆.
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Observe that

|𝐹𝜀(𝑧)| = |𝐹(𝑧)||𝑒−𝜀𝑧𝛾| ≤ 𝐶𝑒𝑐|𝑧|𝛼 ⋅ 𝑒−𝜀|𝑧|𝛾 cos𝛾(𝜋/(2𝛽)) → 0  as  |𝑧| → ∞.

Therefore 𝐹𝜀 is bounded. Let

𝑀 = sup
𝑧∈𝑆

|𝐹𝜀(𝑧)|.

Suppose 𝐹  is not identically zero, let {𝑤𝑗} be a sequence of points such that |𝐹𝜀(𝑤𝑗)| → 𝑀 . Since
𝑀 ≠ 0 and 𝐹𝜀 converges to 0 as |𝑧| → ∞, {𝑤𝑗} is bounded. Hence 𝑤𝑗 → 𝑤 ∈ 𝑆. By the maximum
principle, 𝑤 cannot be interior point of 𝑆. So 𝑤 is on the boundary of 𝑆. Since |𝐹 (𝑧)| ≤ 1 for 𝑧 on
the boundary of 𝑆,

|𝐹𝜀(𝑤)| = |𝐹(𝑤)||𝑒−𝜀𝑤𝛾| ≤ 1 ⇒  𝑀 ≤ 1.

Finally, taking a limit 𝜀 → 0 concludes the proof.

10. By shifting the contour of integration, we obtain

𝑓(𝜉 + 𝑖𝜂) = ∫
∞

−∞
𝑓(𝑥)𝑒−2𝜋𝑖𝑥(𝜉+𝑖𝜂)𝑑𝑥 = ∫

∞

−∞
𝑓(𝑥 − 𝑖𝑦)𝑒−2𝜋𝑖(𝑥−𝑖𝑦)(𝜉+𝑖𝜂)𝑑𝑥.

Therefore

|𝑓(𝜉 + 𝑖𝜂)| = |∫
∞

−∞
𝑓(𝑥 − 𝑖𝑦)𝑒−2𝜋𝑖(𝑥−𝑖𝑦)(𝜉+𝑖𝜂)𝑑𝑥|

= |∫
∞

−∞
𝑓(𝑥 − 𝑖𝑦)𝑒−2𝜋𝑖𝑥𝜉−2𝜋𝑦𝜉+2𝜋𝑥𝜂−2𝜋𝑖𝑦𝜂𝑑𝑥|

= 𝑒−2𝜋𝑦𝜉 ∫
∞

−∞
|𝑓(𝑥 − 𝑖𝑦)|𝑒2𝜋𝑥𝜂𝑑𝑥 ≤ 𝑒−2𝜋𝑦𝜉 ∫

∞

−∞
𝑐𝑒−𝑎𝑥2+𝑏𝑦2𝑒2𝜋𝑥𝜂𝑑𝑥

= 𝑐𝑒−2𝜋𝑦𝜉+𝑏𝑦2 ∫
∞

−∞
𝑒−𝑎𝑥2+2𝜋𝜂𝑥𝑑𝑥 = 𝑐𝑒−2𝜋𝑦𝜉+𝑏𝑦2+𝜋2

𝑎 𝜂2 ∫
∞

−∞
𝑒−𝑎(𝑥−𝜋𝜂/𝑎)2𝑑𝑥.

Now letting 𝑦 = 𝜋
𝑏 𝜉 gives

|𝑓(𝜉 + 𝑖𝜂)| ≤ (𝐶 ∫
∞

−∞
𝑒−𝑎𝑥2𝑑𝑥)𝑒−𝜋2

𝑏 𝜉2+𝜋2
𝑎 𝜂2 .

Hence 𝐶′ = √𝜋/𝑎𝐶, 𝑎′ = 𝜋2/𝑏, 𝑏′ = 𝜋2/𝑎 satisfies the inequality.

11. If 𝑥2 ≤ 𝑦2, then

|𝑓(𝑧)| ≤ 𝐶𝑒𝑐1|𝑧|2 = 𝐶𝑒𝑐1𝑥2+𝑐2𝑦2 ≤ 𝐶𝑒−𝑐1𝑥2+3𝑐1𝑦2

so |𝑓(𝑧)| = 𝑂(𝑒−𝑎𝑥2+𝑏𝑦2). Now suppose 𝑥2 ≥ 𝑦2. Without loss of generality, we can consider the case
arg 𝑧 ∈ [0, 𝜋/4]. We denote 𝑟 = |𝑧|. Note that |𝑓(𝑧)| ≤ 𝐶2𝑒−𝑐2𝑟2  when arg 𝑧 = 0, and |𝑓(𝑧)| ≤ 𝐶1𝑒𝑐1𝑟2

when arg 𝑧 = 𝜋/4. Define

𝐹(𝑧) = 𝑓(𝑧)𝑒(𝑐2+𝑖𝑐1)𝑧2 .

Then

arg 𝑧 = 0 :  |𝐹 (𝑧)| ≤ 𝐶2𝑒−𝑐2𝑟2𝑒𝑐2𝑟2 = 𝐶2,

arg 𝑧 = 𝜋/4 :  |𝐹 (𝑧)| ≤ 𝐶1𝑒𝑐1𝑟2𝑒−𝑐1𝑟2 = 𝐶1.
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By Phragmén–Lindelöf principle, we can get

|𝐹 (𝑧)| ≤ 𝐶, arg 𝑧 ∈ [0, 𝜋/4].

Hence

|𝑓(𝑧)| ≤ 𝐶|𝑒(−𝑐2−𝑖𝑐1)𝑧2| = 𝐶|𝑒(−𝑐2−𝑖𝑐1)(𝑥+𝑖𝑦)2| = 𝐶𝑒−𝑐2(𝑥2−𝑦2)+2𝑐1𝑥𝑦

= 𝐶𝑒−𝑐2𝑥2+𝑐2𝑦2+2𝑐1𝑥𝑦 ≤ 𝐶𝑒
−1

2𝑐1𝑥2+(𝑐2+2𝑐2
1

𝑐2
)𝑦2

.

In the last inequality, we used arithmetic mean-geometric mean inequality

2𝑐1𝑥𝑦 ≤ 𝑐2
2

𝑥2 + 2𝑐2
1

𝑐2
𝑦2.

12. (a) Let 𝜉 = 𝜎 + 𝑖𝜏 . Since 𝑓(𝑥) = 𝑂(𝑒−𝜋𝑥2),

|𝑓(𝜉)| = |∫
∞

−∞
𝑓(𝑥)𝑒−2𝜋𝑖𝑥𝜉𝑑𝑥| = |∫

∞

−∞
𝑓(𝑥)𝑒−2𝜋𝑖𝑥𝜎+2𝜋𝑥𝜏𝑑𝑥| ≤ ∫

∞

−∞
|𝑓(𝑥)|𝑒2𝜋𝑥𝜏𝑑𝑥

≤ 𝐶 ∫
∞

−∞
𝑒−𝜋𝑥2+2𝜋𝑥𝜏𝑑𝑥 = 𝐶 ∫

∞

−∞
𝑒−𝜋(𝑥−𝜏)2+𝜋𝜏2𝑑𝑥 = 𝐶𝑒𝜋𝜏2 .

Therefore a function 𝑓𝑛 defined by 𝑓𝑛(𝜉) = ∫𝑛
−𝑛

𝑓(𝑥)𝑒−2𝜋𝑖𝑥𝜉𝑑𝑥 is holomorphic and uniformly
converges to 𝑓  in all compact subset of ℂ. Hence 𝑓(𝜉) is holomorphic. 𝑓  is even because

𝑓(−𝜉) = ∫
∞

−∞
𝑓(𝑥)𝑒2𝜋𝑖𝑥(−𝜉)𝑑𝑥 = ∫

−∞

∞
𝑓(−𝑡)𝑒2𝜋𝑖𝑡𝜉(−𝑑𝑡) = ∫

∞

−∞
𝑓(𝑡)𝑒2𝜋𝑖𝑡𝜉𝑑𝑡 = 𝑓(𝜉).

Now define 𝑔(𝑧) = 𝑓(𝑧1/2). Then |𝑔(𝑥)| ≤ 𝑐𝑒−𝜋𝑥 since 𝑓(𝜉) = 𝑂(𝑒−𝜋𝜉2). Moreover,

|𝑔(𝑧)| = |𝑓(𝑧1/2)| ≤ 𝑐𝑒𝜋𝑦2 ≤ 𝑐𝑒𝜋(
√

𝑅 sin(𝜃/2))
2

= 𝑐𝑒𝜋𝑅 sin2(𝜃/2) ≤ 𝑐𝑒𝜋|𝑧|.

(b) Now define 𝐹(𝑧) = 𝑔(𝑧)𝑒𝛾𝑧, where 𝛾 = 𝑖𝜋 𝑒−𝑖𝜋/(2𝛽)

sin 𝜋/(2𝛽) = 𝜋 + 𝑖𝜋 cot 𝜋/(2𝛽). Observe that

arg 𝑧 = 0 :  |𝐹 (𝑥)| = |𝑔(𝑥)||𝑒𝛾𝑥| ≤ 𝑐𝑒−𝜋𝑥|𝑒𝛾𝑥| = 𝑐𝑒−𝜋𝑥𝑒𝜋𝑥 = 𝑐,

arg 𝑧 = 𝜋/4 :  |𝐹 (𝑧)| = |𝑔(𝑧)||𝑒𝛾𝑧| ≤ 𝑐𝑒𝜋|𝑧|𝑒−𝜋|𝑧| = 𝑐.

By Phragmén–Lindelöf principle, we get

|𝐹 (𝑧)| ≤ 𝑐.

Take a limit 𝛽 → 1+ then 𝛾 → 𝜋, so 𝑒𝜋𝑧𝑔(𝑧) is bounded on closed upper half-plane. Similarly, same
result holds in lower half-plane. Since 𝑒𝜋𝑧𝑔(𝑧) is holomorphic and bounded in ℂ, 𝑒𝜋𝑧𝑔(𝑧) is constant.

(c) If 𝑓  is odd, then 𝑓  is also odd so 𝑓(0) = 0. Then 𝑓(𝑧)/𝑧 is entire. Note that 𝑔(𝑧) = 𝑓(𝑧1/2)/𝑧1/2 also
satisfies the conclusion of (a), since 𝑔(𝑧) is bounded in |𝑧| ≤ 1 and 𝑔(𝑧) is even smaller than 𝑓(𝑧1/2)
when |𝑧| > 1.

Now we white 𝑓(𝑧) = 𝑓even(𝑧) + 𝑓odd(𝑧), where

𝑓even(𝑧) = 𝑓(𝑧) + 𝑓(−𝑧)
2

, 𝑓odd(𝑧) = 𝑓(𝑧) − 𝑓(−𝑧)
2

.

Since 𝑓(−𝑥) = 𝑂(𝑒−𝜋(−𝑥)2) = 𝑂(𝑒−𝜋𝑥2), 𝑓even and 𝑓odd is also 𝑂(𝑒−𝜋𝑥2). Therefore we can apply
the above argument and deduce that 𝑓 = 𝑓 = 0.
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Chapter 5. Entire Functions

1. Observe that if 𝑓1 and 𝑓2 satisfies the hypotheses and conclusion, then the product 𝑓1𝑓2 also
satisfies the hypothesis and conclusion. Let {𝑧1, ⋯, 𝑧𝑁} be the zeros of 𝑓  inside 𝔻. Then 𝑔(𝑧) =
𝑓(𝑧)/(𝜓𝑧1

𝜓𝑧2
⋯ 𝜓𝑧𝑁

) is bounded near each 𝑧𝑗, so each 𝑧𝑗 is removable singularity of 𝑔. Also, 𝑔 nowhere
vanishes in 𝔻 since 1/|𝑧𝑘| > 1. We write

𝑓(𝑧) = 𝜓𝑧1
(𝑧) 𝜓𝑧2

(𝑧) ⋯ 𝜓𝑧𝑁
(𝑧) 𝑔(𝑧).

For 𝑔, proof is same with step 3 of Theorem 1.1. We prove that Jensen formula holds for each 𝜓𝑤, that is,

log|𝑤| = log(|𝑤|
1

) + 1
2𝜋

∫
2𝜋

0
log| 𝑤 − 𝑒𝑖𝜃

1 − 𝑤𝑒𝑖𝜃 | 𝑑𝜃.

Since

∫
2𝜋

0
log| 𝑤 − 𝑒𝑖𝜃

1 − 𝑤𝑒𝑖𝜃 | 𝑑𝜃 = ∫
2𝜋

0
log|𝑤 − 𝑒𝑖𝜃| 𝑑𝜃 − ∫

2𝜋

0
log|1 − 𝑤𝑒𝑖𝜃| 𝑑𝜃 = 0 − 0 = 0,

the equation holds.

2. (a) For every integer 𝑚 > 0, there exists 𝜀 > 0 such that

|𝑧|𝑚 ≤ 𝐴𝑒𝐵|𝑧|𝜀  for all 𝑧 ∈ ℂ.

Hence the order of growth is 0.
(b) The order of growth is 𝑛.
(c) There is no 𝜌 such that

|𝑒𝑒𝑧| ≤ 𝐴𝑒𝐵|𝑧|𝜌  for all 𝑧 ∈ ℂ,

because for real 𝑧 = 𝑥, taking a logarithm on the inequality above gives

𝑒𝑥 ≤ log 𝐴 + 𝐵|𝑥|𝜌  for all 𝑥 ∈ ℝ

which is false for large 𝑥. Thus the order of growth is inf ⌀ = ∞.

3. Observe that

|Θ(𝑧|𝜏)| ≤ ∑
∞

𝑛=−∞
|𝑒𝜋𝑖𝑛2𝜏𝑒2𝜋𝑖𝑛𝑧| = ∑

∞

𝑛=−∞
𝑒−𝜋𝑛2𝑡|𝑒2𝜋𝑖𝑛𝑧| ≤ ∑

∞

𝑛=−∞
𝑒−𝜋𝑛2𝑡𝑒2𝜋𝑖𝑛|𝑧|.

The last power series converges because

𝑒−𝜋𝑛2𝑡+2𝜋𝑛|𝑧| ≤ 𝑒−𝜋𝑛2𝑡 when 𝑛 → −∞,

𝑒−𝜋𝑛2𝑡+2𝜋𝑛|𝑧| ≤ 𝑒−𝜋𝑛2𝑡/2 when 𝑛 → ∞.

Hence

∑
∞

𝑛=−∞
𝑒−𝜋𝑛2𝑡𝑒2𝜋𝑖𝑛|𝑧| = ∑

∞

𝑛=−∞
𝑒−𝜋𝑡(𝑛−|𝑧|/𝑡)2+𝜋|𝑧|2/𝑡 = ( ∑

∞

𝑛=−∞
𝑒−𝜋𝑡(𝑛−|𝑧|/𝑡)2)𝑒𝜋|𝑧|2/𝑡

which has order of growth 2.

Note. I proved that Θ(𝑧|𝜏) has an order of growth ≤ 2, but i don’t know how to show that order of
growth is exactly equal to 2.
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4. (a) We write

𝐹1(𝑧) = ∏
𝑁

𝑛=1
(1 − 𝑒−2𝜋𝑛𝑡𝑒2𝜋𝑖𝑧) and 𝐹2(𝑧) = ∏

∞

𝑛=𝑁+1
(1 − 𝑒−2𝜋𝑛𝑡𝑒2𝜋𝑖𝑧)

where 𝑁 = ⌈ |𝑧|
𝑡 − 1⌉. Since (𝑁 + 1)𝑇 ≥ |𝑧|,

∑
∞

𝑛=𝑁+1
𝑒−2𝜋𝑛𝑡𝑒2𝜋|𝑧| ≤ 1

1 − 𝑒−2𝜋𝑡 .

Hence

|𝐹2(𝑧)| = ∏
∞

𝑛=𝑁+1
|1 − 𝑒−2𝜋𝑛𝑡+2𝜋𝑖𝑧| = exp( ∑

∞

𝑛=𝑁+1
log|1 − 𝑒−2𝜋𝑛𝑡+2𝜋𝑖𝑧|)

≤ exp( ∑
∞

𝑛=𝑁+1
𝑒−2𝜋𝑛𝑡+2𝜋|𝑧|) ≤ exp(1/(1 − 𝑒−2𝜋𝑡)),

where we used the inequality log|1 − 𝑧| ≤ |1 − 𝑧| + 1 ≤ |𝑧|. However,

|1 − 𝑒−2𝜋𝑛𝑡𝑒2𝜋𝑖𝑧| ≤ 1 + 𝑒2𝜋|𝑧| ≤ 2𝑒2𝜋|𝑧|.

Thus

|𝐹1(𝑧)| ≤ 2𝑁𝑒2𝜋𝑁|𝑧| ≤ 2|𝑧|/𝑡𝑒2𝜋|𝑧|2/𝑡.

Therefore 𝐹(𝑧) = 𝐹1(𝑧)𝐹2(𝑧) has order of growth ≤ 2.
(b) Since the order of growth of 𝐹  is 2, by Theorem 2.1 (ii),

∑ 1
|𝑧𝑛|2+𝜀 < ∞.

for every positive number 𝜀. Note that

∑
𝑚∈ℤ

1
𝑚2 + 𝑎2 ≥ ∑

∞

𝑚=1

1
𝑚2 + 𝑎2 ≥ ∫

∞

1

1
𝑥2 + 𝑎2 𝑑𝑥 = 𝜋

2𝑎
− 1

𝑎
arctan(1

𝑎
).

Hence

∑ 1
|𝑧𝑛|2

= ∑
∞

𝑛=1
∑
𝑚∈ℤ

1
𝑛2𝑡2 + 𝑚2 ≥ ∑

∞

𝑛=1

𝜋
2𝑛𝑡

− 1
𝑛𝑡

arctan( 1
𝑛𝑡

) = ∞.

5. Note that following inequality holds;

−|𝑡|𝛼

2
+ 2𝜋|𝑧||𝑡| ≤ 𝑐|𝑧|𝛼/(𝛼−1)

because if |𝑡|𝛼−1 ≤ 4𝜋|𝑧|, then

−|𝑡|𝛼

2
+ 2𝜋|𝑧||𝑡| ≤ 2𝜋|𝑧||𝑡| ≤ 2𝜋(4𝜋)1/(𝛼−1)|𝑧|𝛼/(𝛼−1),

otherwise, |𝑡|𝛼−1 ≤ 4𝜋|𝑧| implies

−|𝑡|𝛼

2
+ 2𝜋|𝑧||𝑡| = 1

2
|𝑡|(4𝜋|𝑧| − |𝑡|𝛼−1) ≤ 0 ≤ |𝑧|𝛼/(𝛼−1).

Now we can get
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|𝐹𝛼(𝑧)| ≤ ∫
∞

−∞
|𝑒−|𝑡|𝛼+2𝜋𝑖𝑧𝑡|𝑑𝑡 ≤ ∫

∞

−∞
𝑒−|𝑡|𝛼𝑒2𝜋𝑖|𝑧||𝑡|𝑑𝑡 ≤ (∫

∞

−∞
𝑒−|𝑡|𝛼/2𝑑𝑡)𝑒𝑐|𝑧|𝛼/(𝛼−1)

Hence 𝐹𝛼 has order of growth ≤ 𝛼/(𝛼 − 1).

6. By the product formula for sin 𝑧,

sin 𝜋𝑧 = 𝜋𝑧 ∏
∞

𝑛=1
(1 − 𝑧2

𝑛2 ).

Put 𝑧 = 1/2 to get

1 = 𝜋
2

∏
∞

𝑛=1
(1 − 1

4𝑛2 ) ⇒  𝜋
2

= ∏
∞

𝑛=1

4𝑛2

4𝑛2 − 1
= ∏

∞

𝑛=1

2𝑛 ⋅ 2𝑛
(2𝑛 − 1)(2𝑛 + 1)

.

7. (a) Note that |𝑎𝑛| → 0 as 𝑛 → ∞ because ∑ |𝑎𝑛|2 converges.

First we suppose that ∑ 𝑎𝑛 converges. Note that

log(1 + 𝑎𝑛) = 𝑎𝑛 − 1
2
𝑎2

𝑛 + 1
3
𝑎3

𝑛 − 1
4
𝑎4

𝑛 + ⋯ = 𝑎𝑛 − 1
2
𝑎2

𝑛 + 𝑘𝑛𝑎2
𝑛

where 𝑘𝑛 = 1
3𝑎𝑛 − 1

4𝑎2
𝑛 + ⋯ → 0 as 𝑛 → ∞. Since 1/2 − 𝑘𝑛 is bounded,

∑
∞

𝑛=1
(1

2
− 𝑘𝑛)𝑎2

𝑛

converges. Hence

∏
𝑁

𝑛=1
(1 + 𝑎𝑛) = ∏

𝑁

𝑛=1
𝑒log(1+𝑎𝑛) = exp(∑

𝑁

𝑛=1
log(1 + 𝑎𝑛))

= exp(∑
𝑁

𝑛=1
𝑎𝑛 − ∑

𝑁

𝑛=1
(1

2
− 𝑘𝑛)𝑎2

𝑛) → exp(∑
∞

𝑛=1
𝑎𝑛 − ∑

∞

𝑛=1
(1

2
− 𝑘𝑛)𝑎2

𝑛).

Therefore ∏(1 + 𝑎𝑛) converges to a non-zero limit.

Conversely, suppose ∏(1 + 𝑎𝑛) converges to a non-zero limit. Similar to argument above, we get

exp(∑
𝑁

𝑛=1
𝑎𝑛) = ∏

𝑁

𝑛=1
(1 + 𝑎𝑛) ⋅ exp(∑

𝑁

𝑛=1
(1

2
− 𝑘𝑛)𝑎2

𝑛).

Since right hand side converges as 𝑁 → ∞ and lim𝑛→∞ 𝑎𝑛 = 0, ∑ 𝑎𝑛 also converges.
(b) Let 𝑎𝑛 = (−1)𝑛/

√
𝑛. Then ∑ 𝑎𝑛 converges because it is alternating series. Note that ∑ 𝑎2

𝑛 =
∑ 1/𝑛 diverges. Now let

𝑙𝑛 = 1
3

− 1
4
𝑎𝑛 + 1

5
𝑎2

𝑛 − 1
6
𝑎3

𝑛 + ⋯

then 𝑙𝑛 → 1/3 as 𝑛 → ∞ and ∑ 𝑙𝑛𝑎3
𝑛 converges. Similar to argument above,

∏
𝑁

𝑛=1
(1 + 𝑎𝑛) = exp(∑

𝑁

𝑛=1
𝑎𝑛) ⋅ exp(−1

2
∑
𝑁

𝑛=1
𝑎2

𝑛) ⋅ exp(∑
𝑁

𝑛=1
𝑙𝑛𝑎3

𝑛).

If ∏(1 + 𝑎𝑛) converges, then ∑ 𝑎2
𝑛 also converges, which is contradiction. Hence ∏(1 + 𝑎𝑛)

diverges.
(c) 𝑎𝑛 = (−1)𝑛 then ∏(1 + 𝑎𝑛) = 0 converges to 0, while ∑ 𝑎𝑛 = ∑ (−1)𝑛 diverges.
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8. Use the fact that sin 2𝑧 = 2 sin 𝑧 cos 𝑧.

∏
𝑁

𝑘=1
cos( 𝑧

2𝑘 ) = ∏
𝑁

𝑘=1
(

sin(𝑧/2𝑘−1)
2 sin(𝑧/2𝑘)

) = 1
2𝑁 ⋅ sin(𝑧)

sin(𝑧/2𝑁)
= 𝑧/2𝑁

sin(𝑧/2𝑁)
⋅ sin 𝑧

𝑧
→ sin 𝑧

𝑧

as 𝑁 → ∞, since 𝑧/2𝑁 → 0 for all 𝑧 ∈ ℂ.

9. Use the fact that (1 − 𝑧𝑛)(1 + 𝑧𝑛) = 1 − 𝑧2𝑛. Since

(1 − 𝑧) ∏
𝑁

𝑘=0
(1 + 𝑧2𝑘) = 1 − 𝑧2𝑁+1 ,

we get

∏
𝑁

𝑘=0
(1 + 𝑧2𝑘) = 1 − 𝑧2𝑁+1

1 − 𝑧
→ 1

1 − 𝑧

as 𝑁 → ∞ for every |𝑧| < 1.

10. (a) Since 𝑒𝑧 − 1 has zeros at 2𝜋𝑛𝑖 (𝑛 ∈ ℤ) and has order of growth 1, by Hadamard’s factorization
theorem,

𝑒𝑧 − 1 = 𝑒𝑎𝑧+𝑏𝑧 ∏
∞

𝑛=1
(1 − 𝑧

2𝜋𝑛𝑖
)𝑒𝑧/(2𝜋𝑛𝑖)(1 + 𝑧

2𝜋𝑛𝑖
)𝑒−𝑧/(2𝜋𝑛𝑖)

= 𝑒𝑎𝑧+𝑏𝑧 ∏
∞

𝑛=1
(1 + 𝑧2

4𝜋2𝑛2 ).

Divide both sides by 𝑧 and take 𝑧 → 0 to get 𝑒𝑏 = 1. Furthermore, (𝑒𝑧 − 1)/𝑒𝑎𝑧 is odd, hence 𝑎 =
1/2. Therefore

𝑒𝑧 − 1 = 𝑒𝑧/2𝑧 ∏
∞

𝑛=1
(1 + 𝑧2

4𝜋2𝑛2 ).

(b) Since cos 𝜋𝑧 has zeros at 𝑧 = 𝑛 + 1/2 (𝑛 ∈ ℤ) and has order of growth 0, by Hadamard’s factor-
ization theorem,

cos 𝜋𝑧 = 𝑒𝑐 ∏
∞

𝑛=1
(1 − 4𝑧2

(2𝑛 + 1)2 ).

Put 𝑧 = 0 to get 𝑒𝑐 = 1. Hence cos 𝜋𝑧 = ∏∞
𝑛=1(1 − 4𝑧2/(2𝑛 + 1)2).

11. Suppose 𝑓  misses 𝑎, 𝑏. Since 𝑓  is of finite order, there exists a polynomial 𝑝 such that

𝑓(𝑧) − 𝑎 = 𝑒𝑝(𝑧)  for all 𝑧 ∈ ℂ.

There is no 𝑧 such that 𝑓(𝑧) = 𝑏, so there is no 𝑧 such that 𝑝(𝑧) = log(𝑏 − 𝑎). Hence 𝑝 must be constant,
then 𝑓  is also constant.

12. Since 𝑓  is entire and never vanishes, and of finite order, there exists polynomial 𝑝 such that 𝑓(𝑧) = 𝑒𝑝(𝑧)

for all 𝑧 ∈ ℂ. Hence 𝑓 ′(𝑧) = 𝑝′(𝑧)𝑒𝑝(𝑧). 𝑓 ′ also never vanishes, thus 𝑝′(𝑧) must be constant. Therefore
we get 𝑝(𝑧) = 𝑎𝑧 + 𝑏 and 𝑓(𝑧) = 𝑒𝑎𝑧+𝑏.
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13. Note that the order of growth of 𝑒𝑧 − 𝑧 is 1. If equation 𝑒𝑧 − 𝑧 = 0 does not have infinity zeros, then

𝑒𝑧 − 𝑧 = 𝑒𝐴𝑧+𝐵 ∏
𝑁

𝑛=1
(1 − 𝑧

𝑎𝑛
)𝑒𝑧/𝑎𝑛

by Hadamard’s factorization theorem. Putting 𝑧 = 0 gives 𝑒𝐵 = 1. Observe that letting 𝐶 = 𝐴 +
∑𝑁

𝑛=1 1/𝑎𝑛 gives

𝑒𝑧 − 𝑧 = 𝑒𝐶𝑧 ∏
𝑁

𝑛=1
(1 − 𝑧

𝑎𝑛
).

Considering the rate of growth, it must be 𝐶 = 1. Dividing both sides by 𝑒𝑧 to get

1 − 𝑧
𝑒𝑧 = ∏

𝑁

𝑛=1
(1 − 𝑧

𝑎𝑛
).

Taking 𝑧 → ∞ for real 𝑧 gives 1 = ±∞, which is contradiction.

14. Suppose 𝐹  does not have infinity zeros. By Hadamard’s factorization theorem,

𝐹(𝑧) = 𝑒𝑝(𝑧)𝑧𝑚 ∏
𝑁

𝑛=1
𝐸𝑘(𝑧/𝑎𝑛) = 𝑒𝑞(𝑧)𝑧𝑚 ∏

𝑁

𝑛=1
(1 − 𝑧

𝑎𝑛
)

where 𝑞(𝑧) = 𝑝(𝑧) + ∑𝑁
𝑛=1(𝑧 + 𝑧2/2 + ⋯ + 𝑧⌊𝜌⌋/⌊𝜌⌋) is a polynomial of degree ≤ ⌊𝜌⌋. Observe that

order of growth of left-hand side is 𝜌, while the right-hand side is ⌊𝜌⌋. Since 𝜌 is not an integer, 𝜌 ≠ ⌊𝜌⌋,
we get contradiction.

15. The any meromorphic function 𝑓  in ℂ, by definition, is holomorphic in ℂ − {𝑧0, 𝑧1, ⋯} and has poles at
the points {𝑧0, 𝑧1, ⋯}, where {𝑧0, 𝑧1, ⋯} has no limit points. By Theorem 4.1, There exists a function
𝑔 such that has zeros at each 𝑧 = 𝑧𝑘, and there are no other zeros. Then ℎ = 𝑔𝑓  has no pole, therefore
entire. Now we can write 𝑓 = ℎ/𝑔.

Suppose {𝑎𝑛} and {𝑏𝑛} are disjoint sequences having no finite limit points. Then there exists function
𝑓  and 𝑔 such that 𝑓  has zeros exactly at {𝑎𝑛} and 𝑔 has zeros exactly at {𝑏𝑛}. Now ℎ = 𝑓/𝑔 is a
meromorphic function that vanishes exactly at {𝑎𝑛} and has poles exactly at {𝑏𝑛}.

16. Since {𝑎𝑛} has no limit points, lim𝑛→∞|𝑎𝑛| = ∞. We can assume that 𝑎𝑛 ≠ 0. For any compact subset
𝐾 of ℂ, there exists 𝑁 ∈ ℕ such that

𝑛 > 𝑁 ⇒ |𝑎𝑛| > sup
𝑧∈𝐾

|𝑧|.

Observe that each 1
𝑧−𝑎𝑛

 is holomorphic in disc |𝑧| < |𝑎𝑛| for 𝑛 ≥ 1. By Runge’s approximation theorem,
𝑄𝑛( 1

𝑧−𝑎𝑛
) can be uniformly approximated by polynomials 𝑃𝑛(𝑧), thus

|𝑄𝑛( 1
𝑧 − 𝑎𝑛

) − 𝑃𝑛(𝑧)| ≤ 1
2𝑛 , in disc |𝑧| < |𝑎𝑛|

for all 𝑛 ≥ 1. Now consider the function

𝑓(𝑧) = ∑
∞

𝑛=1
(𝑄𝑛( 1

𝑧 − 𝑎𝑛
) − 𝑃𝑛(𝑧)).

Since 𝑧 ∈ 𝐾 ⇒ |𝑧| < |𝑎𝑛|,

∑
∞

𝑛=𝑁+1
(𝑄𝑛( 1

𝑧 − 𝑎𝑛
) − 𝑃𝑛(𝑧))
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is holomorphic in 𝐾 . Moreover,

∑
𝑁

𝑛=1
(𝑄𝑛( 1

𝑧 − 𝑎𝑛
) − 𝑃𝑛(𝑧))

is meromorphic function which has poles at 𝑎𝑛 (1 ≤ 𝑛 ≤ 𝑁) with principal parts 𝑄𝑛( 1
𝑧−𝑎𝑛

). By the
arbitrariness of 𝐾 , 𝑓(𝑧) is meromorphic function which has poles at 𝑎𝑛 (𝑛 ≥ 1) and principal parts
𝑄𝑛( 1

𝑧−𝑎𝑛
) at each poles.

17. (a) Define

𝑃(𝑧) = ∑
𝑛

𝑖=1

(𝑧 − 𝑎1) ⋯ (𝑧 − 𝑎𝑖−1)(𝑧 − 𝑎𝑖+1) ⋯ (𝑧 − 𝑎𝑛)
(𝑎𝑖 − 𝑎1) ⋯ (𝑎𝑖 − 𝑎𝑖−1)(𝑎𝑖 − 𝑎𝑖+1) ⋯ (𝑎𝑖 − 𝑎𝑛)

𝑏𝑖

then 𝑃(𝑎𝑖) = 𝑏𝑖 holds for all 1 ≤ 𝑖 ≤ 𝑛.
(b) For any compact subset 𝐾 of ℂ, there exists 𝑁 ∈ ℕ such that

𝑛 > 𝑁 ⇒ |𝑎𝑛| > sup
𝑧∈𝐾

|𝑧|

because lim𝑘→∞|𝑎𝑘| = ∞. Note that 𝑎𝑛 ∉ 𝐾 for all 𝑛 > 𝑁 . Since 𝐸(𝑧)/(𝑧 − 𝑎𝑛) is bounded in 𝐾
for each 𝑛, there exists 𝑀𝑛 > 0 such that

𝑀𝑛 = sup
𝑧∈𝐾

| 𝐸(𝑧)
𝑧 − 𝑎𝑛

|.

Moreover, |𝐸(𝑧)| is also bounded in 𝐾 ,

lim
𝑛→∞

| 𝐸(𝑧)
𝑧 − 𝑎𝑛

| ≤ lim
𝑛→∞

|𝐸(𝑧)|
𝑎𝑛 − |𝑧|

= 0, ∀𝑧 ∈ 𝐾.

Thus lim𝑛→∞ 𝑀𝑛 = 0. Therefore 𝑀 = sup𝑛∈ℕ 𝑀𝑛 satisfies

| 𝐸(𝑧)
𝑧 − 𝑎𝑛

| ≤ 𝑀, ∀𝑧 ∈ 𝐾, ∀𝑛 > 𝑁.

Let 𝐹𝑁(𝑧) be the partial sum of 𝐹  up to 𝑘 = 𝑁 . There exists 𝑞 ∈ (0, 1) such that |𝑧/𝑎𝑛| < 𝑞 for ∀𝑧 ∈
𝐾, ∀𝑛 > 𝑁 . Hence

|𝐹 (𝑧) − 𝐹𝑁(𝑧)| = | ∑
∞

𝑘=𝑁+1

𝑏𝑘
𝐸′(𝑎𝑘)

𝐸(𝑧)
𝑧 − 𝑎𝑘

( 𝑧
𝑎𝑘

)
𝑚𝑘

| ≤ 𝑀 ∑
∞

𝑘=𝑁+1
| 𝑏𝑘
𝐸′(𝑎𝑘)

|𝑞𝑚𝑘 ≤ 𝑀
2𝑁

where we choose 𝑚𝑘 large enough so |𝑏𝑘/𝐸′(𝑎𝑘)|𝑞𝑚𝑘 < 1/2𝑘 for all 𝑘 ≥ 1. Therefore 𝐹𝑛 uniformly
converges to 𝐹  in every compact subset 𝐾 of ℂ. Since 𝐸(𝑧)/𝑧, 𝐸(𝑧)/(𝑧 − 𝑎𝑘) are holomorphic, 𝐹
is also holomorphic. Note that

lim
𝑎→𝑎𝑙

𝑏𝑘
𝐸′(𝑎𝑘)

𝐸(𝑧)
𝑧 − 𝑎𝑘

= lim
𝑧→𝑎𝑙

𝑏𝑘
𝐸′(𝑎𝑘)

𝐸(𝑧) − 𝐸(𝑎𝑘)
𝑧 − 𝑎𝑘

= {𝑏𝑘 (𝑙 = 𝑘)
0 (𝑙 ≠ 𝑘).

Accordingly,

𝐹(𝑎𝑘) = lim
𝑧→𝑎𝑘

𝐹(𝑧) = lim
𝑧→𝑎𝑘

lim
𝑁→∞

𝐹𝑁(𝑧)

= lim
𝑁→∞

lim
𝑧→𝑎𝑘

𝐹𝑁(𝑧) = lim
𝑁→∞

𝐹𝑁(𝑎𝑘) = lim
𝑁→∞

({𝑏𝑘 (𝑁 ≥ 𝑘)
0 (𝑁 < 𝑘)) = 𝑏𝑘

for all 𝑘 ≥ 0.
Note. The interpolation formulas to both problems have similar forms.
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(a) : 𝐹 (𝑧) = ∑
𝑛

𝑘=0

𝑏𝑘
𝐸′(𝑎𝑘)

𝐸(𝑧)
𝑧 − 𝑎𝑘

where 𝐸(𝑧) = ∏
𝑛

𝑘=0
(𝑧 − 𝑎𝑘),

(b) : 𝐹 (𝑧) = ∑
𝑛

𝑘=0

𝑏𝑘
𝐸′(𝑎𝑘)

𝐸(𝑧)
𝑧 − 𝑎𝑘

( 𝑧
𝑎𝑘

)
𝑚𝑘

where (𝑧/0)0 ≔ 1.

The term (𝑧/𝑎𝑘)𝑚𝑘  is added in order to guarantee the uniform convergence of series.

Chapter 6. The Gamma and Zeta Functions

1. Note that 1/Γ(𝑠) satisfies the following equation:

1
Γ(𝑠)

= 𝑒𝛾𝑠𝑠 ∏
∞

𝑘=1
(1 + 𝑠

𝑘
)𝑒−𝑠/𝑘.

Therefore

Γ(𝑠) = lim
𝑛→∞

𝑒−𝛾𝑠 1
𝑠

∏
𝑁

𝑘=1

𝑘
𝑠 + 𝑘

𝑒𝑠/𝑘 = lim
𝑛→∞

𝑛𝑠𝑛!
𝑠(𝑠 + 1) ⋯ (𝑠 + 𝑛)

𝑒𝑠(1+1/2+⋯+1/𝑛− log 𝑛−𝛾)

= lim
𝑛→∞

𝑛𝑠𝑛!
𝑠(𝑠 + 1) ⋯ (𝑠 + 𝑛)

.

2. Simple calculation leads to

∏
𝑛

𝑘=1

𝑘(𝑘 + 𝑎 + 𝑏)
(𝑘 + 𝑎)(𝑘 + 𝑏)

= (𝑎 + 𝑏 + 1) ⋯ (𝑎 + 𝑏 + 𝑛) ⋅ 𝑛!
(𝑎 + 1) ⋯ (𝑎 + 𝑛) ⋅ (𝑏 + 1) ⋯ (𝑏 + 𝑛)

= ( 𝑛𝑎+1𝑛!
(𝑎 + 1) ⋯ (𝑎 + 1 + 𝑛)

)( 𝑛𝑏+1𝑛!
(𝑏 + 1) ⋯ (𝑏 + 1 + 𝑛)

) ⋅

((𝑎 + 𝑏 + 1) ⋯ (𝑎 + 𝑏 + 1 + 𝑛)
𝑛𝑎+𝑏+1𝑛!

)((𝑎 + 1 + 𝑛)(𝑏 + 1 + 𝑛)
𝑛(𝑎 + 𝑏 + 1 + 𝑛)

)

= Γ(𝑎 + 1)Γ(𝑏 + 1)
Γ(𝑎 + 𝑏 + 1)

.

3. Note that the general term of Wallis’s product is

(2 ⋅ 2
1 ⋅ 3

) ⋅ (4 ⋅ 4
3 ⋅ 5

) ⋯ ( 2𝑛 ⋅ 2𝑛
(2𝑛 − 1)(2𝑛 + 1)

) = 22𝑛(1 ⋅ 1
1 ⋅ 3

) ⋅ (2 ⋅ 2
3 ⋅ 5

) ⋯ ( 𝑛 ⋅ 𝑛
(2𝑛 − 1)(2𝑛 + 1)

)

= 22𝑛 (𝑛!)2

((2𝑛 + 1)!!)2 (2𝑛 + 1)

= 24𝑛 (𝑛!)4

((2𝑛 + 1)!)2 (2𝑛 + 1).

Hence

√𝜋
2

= lim
𝑛→∞

22𝑛 (𝑛!)2

(2𝑛 + 1)!
√

2𝑛 + 1.

As a result,
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Γ(𝑠)Γ(𝑠 + 1/2)
Γ(2𝑠)

= lim
𝑛→∞

𝑛𝑠𝑛!
𝑠(𝑠 + 1) ⋯ (𝑠 + 𝑛)

⋅ 𝑛𝑠+1
2 𝑛!

(𝑠 + 1
2)(𝑠 + 3

2) ⋯ (𝑠 + 1
2 + 𝑛)

⋅ 2𝑠(2𝑠 + 1) ⋯ (2𝑠 + 𝑛)
𝑛2𝑠𝑛!

= lim
𝑛→∞

22𝑛+2𝑛1
2 𝑛!

(2𝑠 + 𝑛 + 1) ⋯ (2𝑠 + 2𝑛 + 1)

= lim
𝑛→∞

22𝑛(𝑛!)2

(2𝑛 + 1)!
(2𝑛 + 1)1

2 ⋅ 22√ 𝑛
2𝑛 + 1

⋅ (𝑛 + 1) ⋯ (2𝑛 + 1)
(2𝑠 + 𝑛 + 1) ⋯ (2𝑠 + 2𝑛 + 1)

.

Since letting 𝑎𝑛 = (𝑛+1) ⋯ (2𝑛+1)
(2𝑠+𝑛+1) ⋯ (2𝑠+2𝑛+1)  gives

− log(𝑎𝑛) = ∑
𝑛+1

𝑘=1
log(1 + 2𝑠

𝑛 + 𝑘
) = ∑

𝑛+1

𝑘=1
( 2𝑠

𝑛 + 𝑘
+ 𝑂( 1

𝑛2 ))

= ∑
𝑛+1

𝑘=1

2𝑠
1 + 𝑘

𝑛
⋅ 1
𝑛

+ 𝑂(1
𝑛

) ⟶⟶⟶⟶⟶⟶
𝑛→∞

∫
1

0

2𝑠
1 + 𝑥

𝑑𝑥 = 2𝑠 ln 2,

we get 𝑎𝑛 → 2−2𝑠 and

Γ(𝑠)Γ(𝑠 + 1/2)
Γ(2𝑠)

= √𝜋
2

⋅ 4√
2

⋅ 2−2𝑠 = 21−2𝑠√𝜋.

4. Since

𝑓 (𝑛)(𝑧) = (−𝛼)(−𝛼 − 1) ⋯ (−𝛼 − (𝑛 − 1))(1 − 𝑧)−𝛼−𝑛 ⋅ (−1)𝑛,

we get

𝑎𝑛(𝛼) = 1
𝑛!

𝑓 (𝑛)(0) = 1
𝑛!

𝛼(𝛼 + 1) ⋯ (𝛼 + (𝑛 − 1)) = 𝛼(𝛼 + 1) ⋯ (𝛼 + 𝑛)
𝑛𝛼𝑛!

⋅ 𝑛𝛼

𝑛 + 𝛼
.

Therefore

𝑎𝑛(𝛼)
𝑛𝛼−1/Γ(𝛼)

= Γ(𝛼) ⋅ 𝛼(𝛼 + 1) ⋯ (𝛼 + 𝑛)
𝑛𝛼𝑛!

⋅ 𝑛
𝑛 + 𝛼

→ 1

as 𝑛 → ∞.

5. We first prove that Γ(𝑠) = Γ(𝑠). This is because

Γ(𝑠) = lim
𝑛→∞

𝑛𝑠𝑛!
𝑠(𝑠 + 1) ⋯ (𝑠 + 𝑛)

= lim
𝑛→∞

( 𝑛𝑠𝑛!
𝑠(𝑠 + 1) ⋯ (𝑠 + 𝑛)

) = Γ(𝑠).

Hence

|Γ(1/2 + 𝑖𝑡)| = √Γ(1/2 + 𝑖𝑡)Γ(1/2 − 𝑖𝑡) = √
𝜋

sin 𝜋(1/2 + 𝑖𝑡)
= √ 𝜋

cos 𝑖𝜋𝑡
= √ 2𝜋

𝑒𝜋𝑡 + 𝑒−𝜋𝑡 .

6. Let’s denote 𝐻𝑛 = 1 + 1/2 + ⋯ + 1/𝑛.
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1 + 1
3

+ 1
5

+ ⋯ + 1
2𝑛 − 1

− 1
2

log 𝑛 = (1 + 1
2

+ ⋯ + 1
2𝑛

) − 1
2
(1 + 1

2
+ ⋯ + 1

𝑛
) − 1

2
log 𝑛

= 𝐻2𝑛 − 1
2
𝐻𝑛 − 1

2
log 𝑛

= (𝐻2𝑛 − log(2𝑛)) − 1
2
(𝐻𝑛 − log 𝑛) + log 2

→ 𝛾 − 1
2
𝛾 + log 2 = 𝛾

2
+ log 2.

7. (a) By definition,

Γ(𝛼)Γ(𝛽) = ∫
∞

0
∫

∞

0
𝑡𝛼−1𝑠𝛽−1𝑒−𝑡−𝑠𝑑𝑡𝑑𝑠.

Now make the change of variables 𝑠 = 𝑢𝑟, 𝑡 = 𝑢(1 − 𝑟). Note that

| 𝜕(𝑠, 𝑡)
𝜕(𝑢, 𝑟)

| = |( 𝑟
1 − 𝑟

𝑢
−𝑢)| = 𝑢

and 𝑑𝑠𝑑𝑡 = 𝑢 𝑑𝑢𝑑𝑟. Thus

Γ(𝛼)Γ(𝛽) = ∫
∞

0
∫

1

0
(𝑢(1 − 𝑟))𝛼−1(𝑢𝑟)𝛽−1𝑒−𝑢𝑢𝑑𝑟𝑑𝑢

= ∫
∞

0
∫

1

0
𝑢𝛼+𝛽−1(1 − 𝑟)𝛼−1𝑟𝛽−1𝑒−𝑢𝑑𝑟𝑑𝑢

= (∫
∞

0
𝑢𝛼+𝛽−1𝑒−𝑢𝑑𝑢)(∫

1

0
(1 − 𝑟)𝛼−1𝑟𝛽−1𝑑𝑟)

= Γ(𝛼 + 𝛽)𝐵(𝛼, 𝛽).

(b) Simply change the variable 𝑡 = 1/(1 + 𝑢) to get

𝐵(𝛼, 𝛽) = ∫
1

0
(1 − 𝑡)𝛼−1𝑡𝛽−1𝑑𝑡 = ∫

0

∞
( 𝑢

1 + 𝑢
)

𝛼−1
( 1

1 + 𝑢
)

𝛽−1 −1
(1 + 𝑢)2 𝑑𝑢

= ∫
∞

0

𝑢𝛼−1

(1 + 𝑢)𝛼+𝛽 𝑑𝑢.

8. By the properties of beta function,

∫
1

−1
𝑒𝑖𝑥𝑡(1 − 𝑡2)𝜈−1

2 𝑑𝑡 = ∫
1

−1
∑
∞

𝑛=1

(𝑖𝑥𝑡)𝑛

𝑛!
(1 − 𝑡2)𝜈−1

2 = ∑
∞

𝑛=0

𝑖𝑛𝑥𝑛

𝑛!
∫

1

−1
𝑡𝑛(1 − 𝑡2)𝜈−1

2 𝑑𝑡

= ∑
∞

𝑚=0

𝑖2𝑚𝑥2𝑚

(2𝑚)!
⋅ 2 ⋅ ∫

1

0
𝑡2𝑚(1 − 𝑡2)𝜈−1

2 𝑑𝑡

= ∑
∞

𝑚=0

(−1)𝑚𝑥2𝑚

(2𝑚)!
∫

1

0
𝑢𝑚−1

2 (1 − 𝑢)𝜈−1
2 𝑑𝑢 = ∑

∞

𝑚=0

(−1)𝑚𝑥2𝑚

(2𝑚)!
𝐵(𝜈 + 1

2
, 𝑚 + 1

2
).

Therefore
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(𝑥/2)𝜈

Γ(𝜈 + 1/2)
√

𝜋
∫

1

−1
𝑒𝑖𝑥𝑡(1 − 𝑡2)𝜈−1

2 𝑑𝑡 = (𝑥/2)𝜈

Γ(𝜈 + 1/2)
√

𝜋
∑
∞

𝑚=0

(−1)𝑚𝑥2𝑚

(2𝑚)!
𝐵(𝜈 + 1

2
, 𝑚 + 1

2
)

= (𝑥/2)𝜈

Γ(𝜈 + 1/2)
√

𝜋
∑
∞

𝑚=1

(−1)𝑚𝑥2𝑚

Γ(2𝑚 + 1)
Γ(𝜈 + 1

2)Γ(𝑚 + 1
2)

Γ(𝜈 + 𝑚 + 1)

= (𝑥
2
)

𝜈
∑
∞

𝑚=1

(−1)𝑚𝑥2𝑚

Γ(𝜈 + 𝑚 + 1)
1

𝑚!22𝑚 = (𝑥
2
)

𝜈
∑
∞

𝑚=0

(−1)𝑚(𝑥2/4)𝑚

𝑚!Γ(𝜈 + 𝑚 + 1)

whenever 𝑥 > 0.

9. Note that

(1 − 𝑧𝑡)−𝛼 = ∑
∞

𝑛=0
𝛼(𝛼 + 1) ⋯ (𝛼 + (𝑛 − 1))(𝑧𝑡)𝑛.

Hence

Γ(𝛾)
Γ(𝛽)Γ(𝛾 − 𝛽)

∫
1

0
𝑡𝛽−1(1 − 𝑡)𝛾−𝛽−1(1 − 𝑧𝑡)−𝛼𝑑𝑡

= Γ(𝛾)
Γ(𝛽)Γ(𝛾 − 𝛽)

∫
1

0
𝑡𝛽−1(1 − 𝑡)𝛾−𝛽−1(∑

∞

𝑛=0
𝛼(𝛼 + 1) ⋯ (𝛼 + (𝑛 − 1))(𝑧𝑡)𝑛)𝑑𝑡

= ∑
∞

𝑛=0

Γ(𝛾)
Γ(𝛽)Γ(𝛾 − 𝛽)

𝛼(𝛼 + 1) ⋯ (𝛼 + (𝑛 − 1))𝑧𝑛 ∫
1

0
𝑡𝑛+𝛽−1(1 − 𝑡)𝛾−𝛽−1𝑑𝑡

= ∑
∞

𝑛=0

Γ(𝛾)
Γ(𝛽)Γ(𝛾 − 𝛽)

𝛼(𝛼 + 1) ⋯ (𝛼 + (𝑛 − 1))Γ(𝛾 − 𝛽)Γ(𝑛 + 𝛽)
Γ(𝛾 + 𝑛)

𝑧𝑛

= 1 + ∑
∞

𝑛=0

𝛼(𝛼 + 1) ⋯ (𝛼 + (𝑛 − 1))𝛽(𝛽 + 1) ⋯ (𝛽 + (𝑛 − 1))
𝛾(𝛾 + 1) ⋯ (𝛾 + (𝑛 − 1))

𝑧𝑛.

10. (a) Integrate the function 𝑓(𝑤) = 𝑒−𝑤𝑤𝑧−1 around the contour below.

𝑅𝜀

𝛾𝑅

𝛾𝜀

𝑓(𝑤) does not have pole in that contour, by Cauchy’s theorem,

∫
𝑅

𝜀
𝑓(𝑥)𝑑𝑥 + ∫

𝛾𝜀

𝑓(𝑤)𝑑𝑤 + ∫
𝜀

𝑅
𝑓(𝑖𝑡)𝑖𝑑𝑡 + ∫

𝛾𝑅

𝑓(𝑤)𝑑𝑤 = 0.

First, we show that the integrals over the quadrant converges to 0.

|∫
𝛾𝜀

𝑓(𝑤)𝑑𝑤| ≤ 𝜋
2
𝜀 ⋅ sup

𝑤∈𝛾𝜀

|𝑒−𝑤𝑤𝑧−1| = 𝜋
2
𝜀 ⋅ sup

𝑤=𝜀𝑒𝑖𝜃∈𝛾𝜀

𝑒−𝜀 cos 𝜃𝜀Re(𝑧)−1𝑒−𝜃Im(𝑧−1)

≤ 𝜋
2
𝜀 ⋅ 𝐴𝜀Re(𝑧)−1 = 𝜋

2
𝐴𝜀Re(𝑧) ⟶⟶⟶⟶⟶⟶

𝜀→0+

0.

Moreover, 𝛿 = 𝑅−(1+Re(𝑧))/2 < 𝜋/2 to get
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|∫
𝛾𝑅

𝑓(𝑤)𝑑𝑤| ≤ ∫
𝜋
2

0
𝑒−𝑅 cos 𝜃𝑅Re(𝑧)𝑒−𝜃Im(𝑧−1)𝑑𝜃

= ∫
𝜋
2 −𝛿

0
𝐶𝑅Re(𝑧)𝑒−𝑅 sin 𝛿𝑑𝜃 + ∫

𝜋
2

𝜋
2 −𝛿

𝐶𝑅Re(𝑧)𝑑𝜃

= (𝜋
2

− 𝛿)𝐶𝑒−𝑅 sin 𝛿𝑅Re(𝑧) + 𝐶𝛿𝑅Re(𝑧) ⟶⟶⟶⟶⟶⟶⟶
𝑅→∞

0.

Therefore we get

∫
∞

0
𝑒−𝑥𝑥𝑧−1𝑑𝑥 = ∫

∞

0
𝑒−𝑖𝑡(𝑖𝑡)𝑧−1𝑑𝑡.

Left hand side is equal to Γ(𝑧), and the right hand side is

∫
∞

0
𝑒−𝑖𝑡(𝑖𝑡)𝑧−1𝑑𝑡 = ∫

∞

0
(cos 𝑡 − 𝑖 sin 𝑡)𝑖(𝑖𝑡)𝑧−1𝑑𝑡

= 𝑖𝑧−1 ∫
∞

0
sin(𝑡)𝑡𝑧−1𝑑𝑡 + 𝑖𝑧 ∫

∞

0
cos(𝑡)𝑡𝑧−1𝑑𝑡

= (sin(𝜋𝑧
2
) − 𝑖 cos(𝜋𝑧

2
))ℳ(sin)(𝑧) + (cos(𝜋𝑧

2
) + 𝑖 sin(𝜋𝑧

2
))ℳ(cos)(𝑧).

Hence

sin(𝜋𝑧
2
)ℳ(sin)(𝑧) + cos(𝜋𝑧

2
)ℳ(cos)(𝑧) = Γ(𝑧)

cos(𝜋𝑧
2
)ℳ(sin)(𝑧) + sin(𝜋𝑧

2
)ℳ(cos)(𝑧) = 0,

and

ℳ(cos)(𝑧) = Γ(𝑧) cos(𝜋𝑧
2
), ℳ(sin)(𝑧) = Γ(𝑧) sin(𝜋𝑧

2
).

(b) Since |sin(𝑡)𝑡𝑧−1| ∼ 𝑡Re(𝑧) near 𝑡 = 0, the integral ∫∞
0

sin(𝑡)𝑡𝑧−1𝑑𝑡 converges for −1 < Re(𝑧) < 1.
Second of the above identities is valid in the larger strip −1 < Re(𝑧) < 1 by Corollary 4.9, Chapter
2. Finally, taking 𝑧 → 0 and 𝑧 = −1/2 gives

∫
∞

0

sin 𝑥
𝑥

𝑑𝑥 = lim
𝑧→0

Γ(𝑧) sin(𝜋𝑧
2
) = lim

𝑧→0
𝑧Γ(𝑧)

sin(𝜋 𝑧
2)

𝑧
= 𝜋

2
,

∫
∞

0

sin 𝑥
𝑥3/2 𝑑𝑥 = Γ(−1

2
) sin(𝜋−1/2

2
) = −2

√
𝜋 ⋅ (− 1√

2
) =

√
2𝜋.

11. First observe that

𝑓(𝑥 + 𝑖𝑦) = 𝑒𝑎(𝑥+𝑖𝑦)𝑒−𝑒𝑥+𝑖𝑦 = 𝑒𝑎(𝑥+𝑖𝑦)𝑒−𝑒𝑥(cos 𝑦+𝑖 sin 𝑦),

so

|𝑓(𝑥 + 𝑖𝑦)| = 𝑒𝑎𝑥−𝑒𝑥 cos 𝑦.

Since 𝑎 > 0 and cos 𝑦 > 0, this function exponentially decreases as |𝑥| → ∞. Also,

𝑓(𝜉) = ∫
∞

−∞
𝑓(𝑥)𝑒−2𝜋𝑖𝑥𝜉𝑑𝑥 = ∫

∞

−∞
𝑒𝑎𝑥𝑒−𝑒𝑥𝑒−2𝜋𝑖𝑥𝜉𝑑𝑥 = ∫

∞

0
𝑒−𝑡𝑡𝑎−2𝜋𝑖𝜉−1𝑑𝑡 = Γ(𝑎 − 2𝜋𝑖𝜉)

Where we changed the variable 𝑡 = 𝑒𝑥.
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12. (a) Since Γ(𝑠 + 1) = 𝑠Γ(𝑠),

Γ(1
2
) = (−1

2
)(−1 − 1

2
) ⋯ (−𝑘 − 1

2
)Γ(−𝑘 − 1

2
).

Hence

1
|Γ(−𝑘 − 1

2)|
= 1

Γ(1
2)

|(−1
2
)(−1 − 1

2
) ⋯ (−𝑘 − 1

2
)| ≥ 1

2Γ(1
2)

𝑘! = 𝑘!
2
√

𝜋
.

Therefore 1/|Γ(𝑠)| is not 𝑂(𝑒𝑐|𝑠|) for any 𝑐 > 0.
(b) Since the order of growth of 𝐹  is 1, by Hadamard’s factorization theorem,

𝐹(𝑠) = 𝑒𝐴𝑠+𝐵𝑠 ∏
∞

𝑛=1
(1 + 𝑠

𝑛
)𝑒−𝑠/𝑛 = 𝑒(𝐴−𝛾)𝑠+𝐵 ⋅ 𝑒𝛾𝑠𝑠 ∏

∞

𝑛=1
(1 + 𝑠

𝑛
)𝑒−𝑠/𝑛 = 𝑒(𝐴−𝛾)𝑠+𝐵

Γ(𝑠)
.

If 𝐹(𝑠) = 𝑂(𝑒𝑐|𝑠|), then 1/Γ(𝑠) = 𝐹(𝑠) ⋅ 𝑒−(𝐴−𝛾)𝑠−𝐵 is also 𝑂(𝑒𝑐|𝑠|), which is contradiction.

13. Note that Γ(𝑠) = ∏∞
𝑛=1

𝑛𝑠𝑛!
𝑠(𝑠+1) ⋯ (𝑠+𝑛) . Hence

log Γ(𝑠) = lim
𝑛→∞

𝑠 log 𝑛 − log 𝑠 + ∑
𝑛

𝑘=1
(log(𝑠 + 𝑘) − log(𝑘))

= lim
𝑛→∞

𝑠(log 𝑛 − 𝐻𝑛) − log 𝑠 + ∑
𝑛

𝑘=1
(𝑠

𝑘
− log(1 + 𝑠

𝑘
))

= −𝑠𝛾 − log 𝑠 + ∑
𝑛

𝑘=1
(𝑠

𝑘
− log(1 + 𝑠

𝑘
)).

Since the series ∑∞
𝑘=1(

1
𝑘 − 1

𝑘+𝑠) = ∑∞
𝑘=1

𝑠
𝑘(𝑘+𝑠)  uniformly converges in any compact subset of ℂ,

𝑑 log Γ(𝑠)
𝑑𝑠

= −𝛾 − 1
𝑠

+ ∑
∞

𝑘=1
(1

𝑘
− 1

𝑘 + 𝑠
).

Also, ∑∞
𝑘=1

1
(𝑘+𝑠)2  uniformly converges in any compact subset of ℂ, thus

𝑑2 log Γ(𝑠)
𝑑𝑠2 = 1

𝑠2 + ∑
∞

𝑘=1

1
(𝑘 + 𝑠)2 = ∑

∞

𝑛=1

1
(𝑠 + 𝑛)2

whenever 𝑠 is positive number. Observe that Γ′(𝑠)/Γ(𝑠) is well defined for 𝑠 ≠ 0, −1, −2, ⋯, and the
formula

(Γ′(𝑠)
Γ(𝑠)

)
′

= ∑
∞

𝑛=1

1
(𝑠 + 𝑛)2

holds for all 𝑠 > 0, it also holds for all complex numbers with 𝑠 ≠ 0, −1, −2, ⋯ by Corollary 4.9,
Chapter 2.

14. (a) Let 𝑓(𝑥) = log Γ(𝑥), and 𝐹(𝑥) be a primitive function of 𝑓(𝑥). Then

𝑑
𝑑𝑥

∫
𝑥+1

𝑥
𝑓(𝑡)𝑑𝑡 = 𝑑

𝑑𝑥
(𝐹(𝑥 + 1) − 𝐹(𝑥)) = 𝑓(𝑥 + 1) − 𝑓(𝑥) = log Γ(𝑥 + 1) − log Γ(𝑥)

= log(𝑥Γ(𝑥)) − log Γ(𝑥) = log 𝑥.

Therefore, we integrate both sides to get

∫
𝑥+1

𝑥
𝑓(𝑡)𝑑𝑡 = 𝑥 log 𝑥 − log 𝑥 + 𝑐.
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(b) Note that Γ(𝑥) is monotonically increasing for all large 𝑥. So

log Γ(𝑥) ≤ ∫
𝑥+1

𝑥
log Γ(𝑡)𝑑𝑡 ≤ log Γ(𝑥 + 1),

that is,

log Γ(𝑥) ≤ 𝑥 log 𝑥 − 𝑥 + 𝑐 ≤ log Γ(𝑥 + 1).

Therefore

(𝑥 − 1) log(𝑥 − 1) − (𝑥 − 1) + 𝑐 ≤ log Γ(𝑥) ≤ 𝑥 log 𝑥 − 𝑥 + 𝑐

and

(𝑥 − 1) log(𝑥 − 1) − (𝑥 − 1) + 𝑐
𝑥 log 𝑥 − 𝑥

≤ log Γ(𝑥)
𝑥 log 𝑥 − 𝑥

≤ 𝑥 log 𝑥 − 𝑥 + 𝑐
𝑥 log 𝑥 − 𝑥

,

which follows by

lim
𝑥→∞

log Γ(𝑥)
𝑥 log 𝑥 − 𝑥

= 1.

In fact, log Γ(𝑛) ∼ 𝑛 log 𝑛 + 𝑂(𝑛) since

lim
𝑥→∞

log Γ(𝑥)
𝑥 log 𝑥 + 𝑂(𝑥)

= lim
𝑥→∞

log Γ(𝑥)
𝑥 log 𝑥 − 𝑥

⋅ 𝑥 log 𝑥 − 𝑥
𝑥 log 𝑥 + 𝑂(𝑥)

= 1.

15. Since 1/(𝑒𝑥 − 1) = ∑∞
𝑛=1 𝑒−𝑛𝑥,

∫
∞

0

𝑥𝑠−1

𝑒𝑥 − 1
𝑑𝑥 = ∫

∞

0
𝑥𝑠−1 ∑

∞

𝑛=1
𝑒−𝑛𝑥𝑑𝑥 = ∑

∞

𝑛=1
∫

∞

𝑜
𝑒−𝑛𝑥𝑥𝑠−1𝑑𝑥

= ∑
∞

𝑛=1
∫

∞

0
𝑒−𝑡( 𝑡

𝑛
)

𝑠−1 1
𝑛

𝑑𝑡 = (∑
∞

𝑛=1

1
𝑛𝑠 )(∫

∞

0
𝑒−𝑡𝑡𝑠−1𝑑𝑡) = 𝜁(𝑠)Γ(𝑠).

Note that we changed the variables 𝑡 = 𝑛𝑥.

16. Write

𝜁(𝑠) = 1
Γ(𝑠)

∫
1

0

𝑥𝑠−1

𝑒𝑥 − 1
𝑑𝑥 + 1

Γ(𝑠)
∫

∞

1

𝑥𝑠−1

𝑒𝑥 − 1
𝑑𝑥.

The second integral defines an entire function, while

∫
1

0

𝑥𝑠−1

𝑒𝑥 − 1
𝑑𝑥 = ∑

∞

𝑚=0

𝐵𝑚
𝑚!(𝑠 + 𝑚 − 1)

,

where 𝐵𝑚 denotes the 𝑚th Bernoulli number defined by

𝑥
𝑒𝑥 − 1

= ∑
∞

𝑚=0

𝐵𝑚
𝑚!

𝑥𝑚.

Then 𝐵0 = 1, and since 𝑧/(𝑒𝑧 − 1) is holomorphic for |𝑧| < 2𝜋, we have lim sup𝑛→∞ |𝐵𝑚/𝑚!|1/𝑚 =
1

2𝜋 . Therefore

lim sup
𝑛→∞

| 𝐵𝑚
𝑚!(𝑠 + 𝑚 − 1)

|
1/𝑚

= 1
2𝜋

,

which means that the series ∑∞
𝑚=0

𝐵𝑚
𝑚!(𝑠+𝑚−1)  converges absolutely. Since
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1/Γ(𝑠) has simple poles at 𝑠 = 0, −1, −2, ⋯, and

∑
∞

𝑚=0

𝐵𝑚
𝑚!(𝑠 + 𝑚 − 1)

has simple poles at 𝑠 = 1, 0, −1, −2, ⋯,

𝜁(𝑠) is continuable in the complex plane with only singularity a simple pole at 𝑠 = 1.

17. (a) We prove that

𝐼(𝑠) = (−1)𝑘

Γ(𝑠 + 𝑘)
∫

∞

0
𝑓 (𝑘)(𝑥)𝑥𝑠+𝑘−1𝑑𝑥, ∀𝑘 ≥ 0

by induction. The case 𝑘 = 0 is trivial by definition. Now suppose the equation holds when 𝑘 = 𝑘0 ≥
0. Then

𝐼(𝑠) = (−1)𝑘0

Γ(𝑠 + 𝑘0)
∫

∞

0
𝑓 (𝑘0)(𝑥)𝑥𝑠+𝑘0−1𝑑𝑥

= (−1)𝑘0

Γ(𝑠 + 𝑘0)
([𝑓 (𝑘0)(𝑥) 1

𝑠 + 𝑘0
𝑥𝑠+𝑘0]

∞

0
− ∫

∞

0
𝑓 (𝑘0+1)(𝑥) 1

𝑠 + 𝑘𝑜
𝑥𝑠+𝑘0𝑑𝑥)

= (−1)𝑘0+1

(𝑠 + 𝑘0)Γ(𝑠 + 𝑘0)
∫

∞

0
𝑓 (𝑘0+1)(𝑥)𝑥𝑠+𝑘0𝑑𝑥

= (−1)𝑘0+1

Γ(𝑠 + 𝑘0 + 1)
∫

∞

0
𝑓 (𝑘0+1)(𝑥)𝑥𝑠+𝑘0𝑑𝑥.

Therefore the equation also holds for 𝑘 = 𝑘0 + 1. Observe that 1/Γ(𝑠 + 𝑘) is holomorphic in
Re(𝑠) > −𝑘, and ∫∞

0
𝑓 (𝑘)(𝑥)𝑥𝑠+𝑘−1𝑑𝑥 is holomorphic in ℂ. Hence 𝐼(𝑠) is holomorphic in Re(𝑠) >

−𝑘. Since 𝑘 ≥ 0 is arbitrary, 𝐼(𝑠) has an analytic continuation as an entire function in ℂ.
(b) Put 𝑠 = −𝑛, 𝑘 = 𝑛 + 1 to get

𝐼(−𝑛) = (−1)𝑛+1

Γ(1)
∫

∞

0
𝑓 (𝑛+1)(𝑥)𝑑𝑥 = (−1)𝑛+1(−𝑓 (𝑛)(0)) = (−1)𝑛𝑓 (𝑛)(0).

In particular, 𝐼(0) = 𝑓(0) when 𝑛 = 0.

Chapter 7. The Zeta Function and Prime Number Theorem

1. Use summation by parts to get

∑
𝑁

𝑛=1
𝑎𝑛𝑛−𝑠 = 𝑁−𝑠𝑎𝑁 + ∑

𝑁−1

𝑛=1
𝐴𝑛(𝑛−𝑠 − (𝑛 + 1)−𝑠).

By the mean value theorem,

| 1
𝑛𝑠 − 1

(𝑛 + 1)𝑠 | = | −𝑠
𝑥𝑠+1 | ≤ | 𝑠

𝑛𝑠+1 | = |𝑠|
𝑛𝜎+1 ,

where 𝑠 = 𝜎 + 𝑖𝑡. Hence the series ∑∞
𝑛=1 𝑎𝑛/𝑛𝑠 converges in Re(𝑠) > 0. Note that 𝐴𝑛 is bounded so

|𝑎𝑁 | = |𝐴𝑁 − 𝐴𝑁−1| ≤ 2𝐴. Now we show that this series converge uniformly on every compact subset
𝐾 of the half plane Re(𝑠) > 0. There exist 𝜎0 > 0 and 𝑀 > 0 such that 𝑠 ∈ 𝐾 ⇒ Re(𝑠) ≥ 𝜎0, |𝑠| ≤
𝑀 . Hence
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| ∑
∞

𝑛=𝑁+1
| = |−𝑁−𝑠𝑎𝑁 + ∑

∞

𝑛=𝑁
𝐴𝑛(𝑛−𝑠 − (𝑛 + 1)−𝑠)| ≤ 𝑁−𝜎|𝑎𝑁 | + ∑

∞

𝑛=𝑁
|𝐴𝑛| |𝑠|

𝑛𝜎+1

≤ 𝑁−𝜎0 ⋅ 2𝐴 + 𝑀𝐴 ∑
∞

𝑛=𝑁

1
𝑛𝜎0+1 → 0

as 𝑁 → ∞. Therefore this series converges absolutely in 𝐾 . Finally, ∑∞
𝑛=1 𝑎𝑛/𝑛𝑠 defines a holomorphic

function in half plane by Theorem 5.2, Chapter 2.

2. (a) Since {𝑎𝑚} and {𝑏𝑘} are bounded, ∑ 𝑎𝑚/𝑚𝑠 and ∑ 𝑏𝑘/𝑘𝑠 converge absolutely when Re(𝑠) > 1.
Moreover, ∑ 𝑐𝑛/𝑛𝑠 converges because

∑
𝑁

𝑛=1

𝑐𝑛
𝑛𝑠 = ∑

𝑁

𝑛=1
∑

𝑚𝑘=𝑛

𝑎𝑚
𝑚𝑠 ⋅ 𝑏𝑘

𝑘𝑠 = ∑
𝑁

𝑚=1(
((𝑎𝑚

𝑚𝑠 ∑
⌊𝑁/𝑚⌋

𝑘=1

𝑏𝑘
𝑘𝑠

)
)) → (∑

∞

𝑚=1

𝑎𝑚
𝑚𝑠 )(∑

∞

𝑘=1

𝑏𝑘
𝑘𝑠 )

as 𝑁 → ∞. Let |𝑎𝑚| ≤ 𝐴, |𝑏𝑘| ≤ 𝐵. Then

∑
𝑁

𝑛=1
| 𝑐𝑛
𝑛𝑠 | = ∑

𝑁

𝑛=1
| ∑
𝑚𝑘=𝑛

𝑎𝑚
𝑚𝑠 ⋅ 𝑏𝑘

𝑘𝑠 | ≤ ∑
𝑁

𝑚=1(
((|𝑎𝑚

𝑚𝑠 | ∑
⌊𝑁/𝑚⌋

𝑘=1
| 𝑏𝑘
𝑘𝑠 |

)
))

= ∑
𝑁

𝑚=1(
((|𝑎𝑚|

𝑚𝜎 ∑
⌊𝑁/𝑚⌋

𝑘=1

|𝑏𝑘|
𝑘𝜎

)
)) ≤ 𝐴𝐵(∑

∞

𝑙=1

1
𝑙𝜎

)
2

.

Hence above series converge absolutely when Re(𝑠) > 1.
(b) By (a),

(𝜁(𝑠))2 = (∑
∞

𝑚=1

1
𝑚𝑠 )(∑

∞

𝑘=1

1
𝑘𝑠 ) = ∑

∞

𝑛=1

1
𝑛𝑠 ( ∑

𝑚𝑘=𝑛
1 ⋅ 1) = ∑

∞

𝑛=1

𝑑(𝑛)
𝑛𝑠

for Re(𝑠) > 1 and

𝜁(𝑠)𝜁(𝑠 − 𝑎) = (∑
∞

𝑚=1

1
𝑚𝑠 )(∑

∞

𝑘=1

𝑘𝑎

𝑘𝑠 ) = ∑
∞

𝑛=1

1
𝑛𝑠 ( ∑

𝑚𝑘=𝑛
1 ⋅ 𝑘𝑎) = ∑

∞

𝑛=1

𝜎𝑎(𝑛)

𝑛𝑠

for Re(𝑠 − 𝑎) > 1.

3. (a) Using the Euler product formula,

1
𝜁(𝑠)

= ∏
𝑝

(1 − 𝑝−𝑠).

Since every natural numbers less than 𝑁  is the product of primes less than 𝑁 ,

| ∏
𝑝<𝑁

(1 − 𝑝−𝑠) − ∑
𝑁−1

𝑛=1

𝜇(𝑛)
𝑛𝑠 | < ∑

∞

𝑛=𝑁

1
𝑛𝑠 .

Hence 𝑁 → ∞ to get

1
𝜁(𝑠)

= ∏
𝑝

(1 − 𝑝−𝑠) = ∑
∞

𝑛=1

𝜇(𝑛)
𝑛𝑠 .

(b) Define 𝑎𝑛 = ∑𝑘|𝑛 𝜇(𝑘). Observe that |𝑎𝑛| ≤ 𝑛. Since 𝜁(𝑠) ⋅ 1
𝜁(𝑠) = 1, by Exercise 2,
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1 = (∑
∞

𝑚=1

1
𝑚𝑠 )(∑

∞

𝑘=1

𝜇(𝑘)
𝑘𝑠 ) = ∑

∞

𝑛=1

1
𝑛𝑠

(
((∑

𝑘|𝑛
𝜇(𝑘)

)
)) = 𝑎1 + 𝑎2

2𝑠 + 𝑎3
3𝑠 + ⋯.

The equation above holds for all Re(𝑠) > 1. Since |𝑎𝑛/𝑛𝑠| ≤ 1/𝑛𝜎−1 for 𝑠 = 𝜎 + 𝑖𝑡, taking 𝑠 →
∞ gives 𝑎1 = 1. Similarly, multiply both sides by 2𝑠 and taking 𝑠 → ∞ gives 𝑎2 = 0. Repeat this
process to get

∑
𝑘|𝑛

𝜇(𝑘) = {1 if 𝑛 = 1
0 otherwise.

4. Since 1/(𝑒𝑞𝑥 − 1) = ∑∞
𝑛=1 𝑒−𝑛𝑞𝑥,

∫
∞

0

𝑄(𝑥)𝑥𝑠−1

𝑒𝑞𝑥 − 1
𝑑𝑥 = ∫

∞

0
𝑄(𝑥)𝑥𝑠−1 ∑

∞

𝑛=1
𝑒−𝑛𝑞𝑥𝑑𝑥 = ∑

∞

𝑛=1
∫

∞

0
∑
𝑞−1

𝑚=0
𝑎𝑞−𝑚𝑒𝑚𝑥𝑥𝑠−1𝑒−𝑛𝑞𝑥𝑑𝑥

= ∑
∞

𝑛=1
∫

∞

0
∑
𝑞−1

𝑚=0
𝑎𝑞−𝑚𝑥𝑠−1𝑒(𝑚−𝑛𝑞)𝑥𝑑𝑥

= ∑
∞

𝑛=1
∫

∞

0
∑
𝑞−1

𝑚=0
𝑎𝑞−𝑚( 𝑡

𝑛𝑞 − 𝑚
)

𝑠−1

𝑒−𝑡 𝑑𝑡
𝑛𝑞 − 𝑚

= ∑
∞

𝑛=1
(∫

∞

0
𝑡𝑠−1𝑒−𝑡𝑑𝑡) ∑

𝑞−1

𝑚=0

𝑎𝑛𝑞−𝑚

(𝑛𝑞 − 𝑚)𝑠 = Γ(𝑠)𝐿(𝑠).

Hence

𝐿(𝑠) = 1
Γ(𝑠)

∫
∞

0

𝑄(𝑥)𝑥𝑠−1

𝑒𝑞𝑥 − 1
𝑑𝑥, Re(𝑠) > 1.

Now write

𝐿(𝑠) = 1
Γ(𝑠)

∫
1/𝑞

0

𝑄(𝑥)𝑥𝑠−1

𝑒𝑞𝑥 − 1
𝑑𝑥 + 1

Γ(𝑠)
∫

∞

1/𝑞

𝑄(𝑥)𝑥𝑠−1

𝑒𝑞𝑥 − 1
𝑑𝑥.

The second integral defines an entire function, while

∫
1/𝑞

0

𝑄(𝑥)𝑥𝑠−1

𝑒𝑞𝑥 − 1
𝑑𝑥 = ∑

𝑞−1

𝑚=0
𝑎𝑞−𝑚 ∫

1/𝑞

0

𝑒𝑚𝑥𝑥𝑠−1

𝑒𝑞𝑥 − 1
𝑑𝑥 = ∑

𝑞−1

𝑚=0
𝑎𝑞−𝑚 ∫

1

0

𝑒
𝑚
𝑞 𝑢(𝑢

𝑞 )
𝑠−1

𝑒𝑢 − 1
𝑑𝑡
𝑞

= 1
𝑞𝑠 ∑

𝑞−1

𝑚=0
𝑎𝑞−𝑚 ∫

1

0

𝑒
𝑚
𝑞 𝑢𝑢𝑠−1

𝑒𝑢 − 1
𝑑𝑢.

Moreover,

∫
1

0

𝑒
𝑚
𝑞 𝑢𝑢𝑠−1

𝑒𝑢 − 1
𝑑𝑢 = ∫

1

0
𝑒

𝑚
𝑞 𝑢 ∑

∞

𝑘=0

𝐵𝑘
𝑘!

𝑢𝑠+𝑘−2𝑑𝑢 = ∑
∞

𝑘=0

𝐵𝑘
𝑘!

∫
1

0
∑
∞

𝑙=0

1
𝑙!

(𝑚
𝑞

𝑢)
𝑙

𝑢𝑠+𝑘−2𝑑𝑢

= ∑
∞

𝑘=0

𝐵𝑘
𝑘!

∑
∞

𝑙=0

1
𝑙!

𝑚𝑙

𝑞𝑙
1

𝑠 + 𝑘 + 𝑙 − 1
.

where 𝐵𝑘 denotes the 𝑘th Bernoulli number. (see Exercise 16, Chapter 6.) Therefore
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∫
1/𝑞

0

𝑄(𝑥)𝑥𝑠−1

𝑒𝑞𝑥 − 1
𝑑𝑥

= 1
𝑞𝑠 (∑

𝑞−1

𝑚=0
𝑎𝑞−𝑚) 1

𝑠 − 1
+ 1

𝑞𝑠 (∑
𝑞−1

𝑚=0
𝑎𝑞−𝑚(𝐵1

1!
+ 𝐵0

0!
𝑚
𝑞

))1
𝑠

+ 1
𝑞𝑠 (∑

𝑞−1

𝑚=0
𝑎𝑞−𝑚(𝐵2

2!
+ 𝐵1

1!
𝑚
𝑞

+ 𝐵0
0!

𝑚2

𝑞2 )) 1
𝑠 + 1

+ ⋯.

If this series have simple poles at each of 𝑠 = 0, −1, −2, ⋯, then it is cancelled with simple zeros of
1/Γ(𝑠). However, there is no zeros of 1/Γ(𝑠) such that simple pole at 𝑠 = 1 can be cancelled with. Hence
𝐿(𝑠) is continuable into the complex plane, with the only possible singularity a pole at 𝑠 = 1. In addition,
by series expansion above, 𝐿(𝑠) is regular at 𝑠 = 1 if and only if ∑𝑞−1

𝑚=0 𝑎𝑞−𝑚 = 0.

5. (a) Since ∑𝑁
𝑛=1 (−1)𝑛 is bounded, by Exercise 1, the series defining 𝜁(𝑠) converges for Re(𝑠) > 0 and

defines a holomorphic function in that half-plane.
(b) Define 𝜁𝑁(𝑠) = ∑𝑁

𝑛=1 (−1)𝑛+1/𝑛𝑠. Then

𝜁𝑁(𝑠) = ∑
𝑁

𝑛=1

(−1)𝑛+1

𝑛𝑠 = ∑
𝑁

𝑛=1

1
𝑛𝑠 − 1 − (−1)𝑛+1

𝑛𝑠

= ∑
𝑁

𝑛=1

1
𝑛𝑠 − 2 ∑

⌊𝑁/2⌋

𝑘=1

1
(2𝑘)𝑠 = 𝜁𝑁(𝑠) − 21−𝑠𝜁⌊𝑁/2⌋(𝑠).

Taking 𝑁 → ∞ gives 𝜁(𝑠) = (1 − 21−𝑠)𝜁(𝑠).
(c) Let 𝑠 = 𝜎 + 𝑖𝑡. Since both 𝜁(𝑠) and (1 − 21−𝑠)𝜁(𝑠) are holomorphic in Re(𝑠) > 0 and coincides

for 𝑠 > 1, we know that 𝜁(𝑠) = (1 − 21−𝑠)𝜁(𝑠) for all Re(𝑠) > 0. Moreover, 𝜁(𝑠) is given as an
alternating series, so 𝜁(𝑠) ≠ 0 for segment 0 < 𝜎 < 1. Hence 𝜁(𝑠) ≠ 0 for 0 < 𝜎 < 1.

By Exercise 4, 𝜁(𝑠) can be expressed by

𝜁(𝑠) = 1
Γ(𝑠)

∫
∞

0

(𝑒𝑥 − 1)𝑥𝑠−1

𝑒2𝑥 − 1
𝑑𝑥 = 1

Γ(𝑠)
∫

∞

0

𝑥𝑠−1

𝑒𝑥 + 1
𝑑𝑥

and 𝜁(𝑠) is entire function. Integration by parts to get

𝜁(𝑠) = 1
Γ(𝑠 + 1)

∫
∞

0

𝑥𝑠𝑒𝑥

(𝑒𝑥 + 1)2 𝑑𝑥.

In particular,

𝜁(0) = ∫
∞

0

𝑒𝑥

(𝑒𝑥 + 1)2 𝑑𝑥 = 1
2
.

Hence 𝜁(0) = −1/2 and we can extend last assertion to 𝜎 = 0.

6. We will integrate the function 𝑓(𝑠) = 𝑎𝑠/𝑠 over the appropriate semicircle.
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𝛾𝑁

0 𝑐

contour when 𝑎 > 1

𝛾𝑁

0 𝑐

contour when 0 ≤ 𝑎 < 1

First consider the case 𝑎 > 1. We integrate the function 𝑓(𝑠) = 𝑎𝑠/𝑠 over the left semicircle of radius 𝑁
centered at 𝑐. Since 𝑓(𝑠) has simple pole at 𝑠 = 0 and Res𝑠=0 𝑎𝑠/𝑠 = 1,

∫
𝑐+𝑖𝑁

𝑐−𝑖𝑁

𝑎𝑠

𝑠
𝑑𝑠 + ∫

𝛾𝑁

𝑎𝑠

𝑠
= 2𝜋𝑖.

Now we estimate the integral over the semicircle.

|∫
𝛾𝑁

𝑎𝑠

𝑠
𝑑𝑠| = |∫

3𝜋/2

𝜋/2

𝑎𝑐+𝑁𝑒𝑖𝜃

𝑐 + 𝑁𝑒𝑖𝜃 𝑖𝑁𝑒𝑖𝜃𝑑𝜃| ≤ ∫
3𝜋/2

𝜋/2

𝑁
𝑁 − 𝑐

𝑎𝑐|𝑎𝑀𝑒𝑖𝜃|𝑑𝜃

= 𝑁𝑎𝑐

𝑁 − 𝑐
∫

3𝜋/2

𝜋/2
𝑎𝑁 cos 𝜃𝑑𝜃.

Let 𝛿 = 𝑁−1/2 < 𝜋/2 for large 𝑁 , then

∫
3𝜋/2

𝜋/2
𝑎𝑁 cos 𝜃𝑑𝜃 = ∫

𝜋/2+𝛿

𝜋/2
𝑎𝑁 cos 𝜃𝑑𝜃 + ∫

3𝜋/2−𝛿

𝜋/2+𝛿
𝑎𝑁 cos 𝜃𝑑𝜃 + ∫

3𝜋/2

3𝜋/2−𝛿
𝑎𝑁 cos 𝜃𝑑𝜃

≤ 2𝛿 + (𝜋 − 2𝛿)𝑎𝑁 sin 𝛿 → 0

as 𝑁 → ∞. Hence lim𝑁→∞ ∫𝑐+𝑖𝑁
𝑐−𝑖𝑁

𝑎𝑠

𝑠 𝑑𝑠 = 2𝜋𝑖.

If 0 ≤ 𝑎 < 1, integrate the function 𝑓(𝑠) over the right semicircle of radius 𝑁  centered at 𝑐. Since there
is no poles of 𝑓(𝑠),

∫
𝑐+𝑖𝑁

𝑐−𝑖𝑁

𝑎𝑠

𝑠
𝑑𝑠 + ∫

𝛾𝑁

𝑎𝑠

𝑠
= 0.

Similar to the case 𝑎 < 1, the integral over the semicircle converges to 0 because

|∫
𝛾𝑁

𝑎𝑠

𝑠
𝑑𝑠| = |∫

−𝜋/2

𝜋/2

𝑎𝑐+𝑁𝑒𝑖𝜃

𝑐 + 𝑁𝑒𝑖𝜃 𝑖𝑁𝑒𝑖𝜃𝑑𝜃|

≤ 𝑁𝑎𝑐

𝑁 − 𝑐
∫

𝜋/2

−𝜋/2
𝑎𝑁 cos 𝜃𝑑𝜃 = 𝑁𝑎𝑐

𝑁 − 𝑐
∫

3𝜋/2

𝜋/2
(1

𝑎
)

𝑁 cos 𝜃
𝑑𝜃

and 1/𝑎 > 1. Thus lim𝑁→∞ ∫𝑐+𝑖𝑁
𝑐−𝑖𝑁

𝑎𝑠

𝑠 𝑑𝑠 = 0.

Finally, consider the case 𝑎 = 1.

∫
𝑐+𝑖𝑁

𝑐−𝑖𝑁

𝑎𝑠

𝑠
𝑑𝑠 = ∫

𝑐+𝑖𝑁

𝑐−𝑖𝑁

1
𝑠
𝑑𝑠 = log(𝑐 + 𝑖𝑁) − log(𝑐 − 𝑖𝑁) = 𝑖(𝜃2 − 𝜃1),

where 𝜃1 = arg(𝑐 − 𝑖𝑁), 𝜃2 = arg(𝑐 + 𝑖𝑁). Therefore
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lim
𝑁→∞

∫
𝑐+𝑖𝑁

𝑐−𝑖𝑁

𝑎𝑠

𝑠
𝑑𝑠 = lim

𝑁→∞

𝑖(𝜃2 − 𝜃1)
2𝜋𝑖

= 𝜋𝑖
2𝜋𝑖

= 1
2
.

7. Recall the formula

𝜉(𝑠) = 𝜋−𝑠/2Γ(𝑠/2)𝜁(𝑠) = 1
𝑠 − 1

− 1
𝑠

+ ∫
∞

1
(𝑢−𝑠

2−1
2 + 𝑢𝑠

2−1)𝜓(𝑢)𝑑𝑢,

where 𝜓(𝑢) = 𝜗(𝑢)−1
2 = ∑∞

𝑛=1 𝑒−𝜋𝑛2𝑢. Obviously 𝜉(𝑠) is real when 𝑠 is real. Now suppose Re(𝑠) = 1/2,
that is, 𝑠 = 1/2 + 𝑖𝑡. Then

𝜉(𝑠) = 𝜉(1/2 + 𝑖𝑡) = 1
−1

2 + 𝑖𝑡
+ 1

−1
2 − 𝑖𝑡

+ ∫
∞

1
(𝑢−3

4−𝑖 𝑡
2 + 𝑢−3

4+𝑖 𝑡
2 )𝜓(𝑢)𝑑𝑢.

Since 𝜉(𝑠) = 𝜉(𝑠), we conclude that 𝜉(𝑠) is real when Re(𝑠) = 1/2.

8. (a) Let

𝐹(𝑠) = 1
(1

2 + 𝑠)(1
2 − 𝑠)

𝜉(1
2

+ 𝑠).

Since 𝜉(1/2 + 𝑠) = 𝜉(1/2 − 𝑠), 𝐹(𝑠) is an even function of 𝑠. Define

𝐺(𝑠) = 𝐹(±𝑠1
2 ).

𝐺 is well-defined because 𝐹  is even. Hence 𝐺(𝑠2) = 𝐹(𝑠).
(b) Recall the functional equation 𝜉(𝑠) = 𝜋−𝑠/2Γ(𝑠/2)𝜁(𝑠) and

𝜉(𝑠) = 1
𝑠 − 1

− 1
𝑠

+ ∫
∞

1
(𝑢−𝑠

2−1
2 + 𝑢𝑠

2−1)𝜓(𝑢)𝑑𝑢, 𝜓(𝑢) = 𝜗(𝑢) − 1
2

= ∑
∞

𝑛=1
𝑒−𝜋𝑛2𝑢.

Then

|𝜉(𝑠)| ≤ | 1
𝑠 − 1

| + |1
𝑠
| + ∫

∞

1
|𝑢−𝑠

2−1
2 + 𝑢𝑠

2−1|𝜓(𝑢)𝑑𝑢.

Moreover,

∫
∞

1
|𝑢−𝑠

2−1
2 + 𝑢𝑠

2−1|𝜓(𝑢)𝑑𝑢 ≤ ∫
∞

1
2𝑢

|𝜎|
2 +1 ∑

∞

𝑛=1
𝑒−𝜋𝑛2𝑢𝑑𝑢 ≤ 2 ∑

∞

𝑛=1
∫

∞

0
𝑢

|𝜎|
2 +1𝑒−𝜋𝑛2𝑢𝑑𝑢

≤ 2 ∑
∞

𝑛=1
∫

∞

0

𝑥|𝜎|/2+1

(𝜋𝑛2)|𝜎|/2+1 𝑒−𝑥 𝑑𝑥
𝜋𝑛2 = 2Γ(|𝜎|

2
+ 2) ∑

∞

𝑛=1

1
(𝜋𝑛2)|𝜎|/2+2

≤ 𝑐Γ(|𝜎|
2

+ 2)

for 𝑠 = 𝜎 + 𝑖𝑡. Let 𝑁 ∈ ℕ be 𝑁 − 1 < |𝜎|/2 + 2 ≤ 𝑁 , then

Γ(|𝜎|
2

+ 2) ≤ Γ(𝑁) = (𝑁 − 1)! ≤ (𝑁 − 1)𝑁−1 = 𝑒(𝑁−1) log(𝑁−1) ≤ 𝑒( |𝜎|
2 +2) log( |𝜎|

2 +2)

≤ 𝑒( |𝑠|
2 +2) log( |𝑠|

2 +2) ≤ 𝑒𝑐1|𝑠| log|𝑠|

for large |𝑠|. Hence |𝜉(𝑠)| ≤ 𝑐2𝑒𝑐3|𝑠| log|𝑠| for large |𝑠|. Additionally |1/Γ(𝑠)| ≤ 𝑐4𝑒𝑐5|𝑠| log|𝑠|, we know

(𝑠 − 1)𝜁(𝑠) = 𝜋𝑠/2 1
Γ(𝑠/2)

(𝑠 − 1)𝜉(𝑠)
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is entire and has order of growth 1. Therefore

(𝑠2 − 1
4
)𝐹(𝑠) = −𝜉(1

2
+ 𝑠)

has order of growth 1, and

(𝑠 − 1
4
)𝐺(𝑠)

has order of growth 1/2.
(c) Since 𝐺 has order of growth that is non-integral, by Exercise 14, Chapter 5, there is infinitely many

zeros of 𝐺. By definition, 𝐹(𝑠) has infinitely many zeros, and 𝜉(𝑠) also has infinitely many zeros.

In the case of Re(𝑠) ≥ 1, then both Γ(𝑠/2) and 𝜁(𝑠) have no zeros, so 𝜉(𝑠) is zero-free. If Re(𝑠) < 0,
then 𝜁(𝑠) has zeros at 𝑠 = −2, −4, −6, ⋯, but these are cancelled with simple poles of Γ(𝑠/2) at 𝑠 =
0, −2, −4, ⋯. Hence 𝜉(𝑠) have infinitely many zeros in 0 < Re(𝑠) < 1. Since Γ(𝑠/2) has no zeros in
that strip, 𝜁(𝑠) has infinitely many zeros in the critical strip.

9. (a) By Proposition 2.5, Corollary 2.6 of Chapter 6,

𝜁(𝑠) = 1
𝑠 − 1

+ ∑
𝕆

𝑛=1
𝛿𝑛(𝑠) = 1

𝑠 − 1
+ ∑

𝑁−1

𝑛=0
𝛿𝑛(𝑠) + ∑

∞

𝑛=𝑁
𝛿𝑛(𝑠)

= 1
𝑠 − 1

+ ∑
𝑁−1

𝑛=1

1
𝑛𝑠 − ∫

𝑁

1

1
𝑥𝑠 𝑑𝑥 + ∑

∞

𝑛=𝑁
𝛿𝑛(𝑠)

= ∑
𝑁−1

𝑛=1

1
𝑛𝑠 − 𝑁1−𝑠

1 − 𝑠
+ ∑

∞

𝑛=𝑁
𝛿𝑛(𝑠).

Hence

𝜁(𝑠) = ∑
𝑁−1

𝑛=1

1
𝑛𝑠 − 𝑁1−𝑠

1 − 𝑠
+ ∑

∞

𝑛=𝑁
𝛿𝑛(𝑠)

for 𝑁 ≥ 2, Re(𝑠) > 0. Now let 𝑠 = 1 + 𝑖𝑡 and choose 𝑁 = ⌊|𝑡| + 1⌋ to get

|𝜁(1 + 𝑖𝑡)| ≤ ∑
𝑁−1

𝑛=1

1
𝑛

+ 1
|𝑡|

+ ∑
∞

𝑛=𝑁

√
𝑡2 + 1
𝑛2 ≤ 1 + ∫

𝑁−1

1

1
𝑥

𝑑𝑥 + 1
|𝑡|

+
√

5
2

|𝑡| ∫
∞

𝑁−1

1
𝑥2 𝑑𝑥

≤ 1 + log(𝑁 − 1) + 1
|𝑡|

+
√

5
2

|𝑡| 1
𝑁 − 1

≤ 1 + log|𝑡| + 1
|𝑡|

+
√

5
2

|𝑡|
|𝑡| − 1

≤ 𝐴 log|𝑡|.

(b) Differentiate both sides of functional equation to get

𝜁′(𝑠) = ∑
𝑁−1

𝑛=1

− log 𝑛
𝑛𝑠 + 𝑁1−𝑠(1 − 𝑠) log 𝑁 + 𝑁1−𝑠

(1 − 𝑠)2 + ∑
∞

𝑛=𝑁
𝛿′
𝑛(𝑠),

where

|𝛿′
𝑛(𝑠)| ≤ ∫

𝑛+1

𝑛
| log 𝑛

𝑛𝑠 − log 𝑥
𝑥𝑠 |𝑑𝑥 ≤ 1 + |𝑠| log 𝑛

𝑛𝜎+1

for large 𝑛. Since there exists 𝑘 > 0 such that |𝑠| ≤ 𝑘|𝑡| for |𝑡| ≥ 2, and 𝑁 = ⌊|𝑡| + 1⌋,
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|𝜁′(1 + 𝑖𝑡)| ≤ ∑
𝑁−1

𝑛=1

log 𝑛
𝑛

+ |𝑡| log 𝑁 + 1
|𝑡|2

+ ∑
∞

𝑛=𝑁

1 + 𝑘|𝑡| log 𝑛
𝑛2

≤ log 2
2

+ log 3
3

+ ∫
𝑁−1

3

log 𝑥
𝑥

𝑑𝑥 + log 𝑁
|𝑡|

+ 1
|𝑡|2

+ 𝜋2

6
+ 𝑘|𝑡| ∫

∞

𝑁−1

log 𝑥
𝑥2 𝑑𝑥

= 𝐶 + 1
2
(log|𝑡|)2 + log(|𝑡| + 1)

|𝑡|
+ 1

|𝑡|2
+ 𝑘|𝑡|

|𝑡| − 1
− 𝑘 log(|𝑡| − 1)

≤ 𝐴(log|𝑡|)2.

(c) In fact, the estimates of zeta function in (a), (b) is also hold for 1 ≤ 𝜎 ≤ 2 ∧ |𝑡| ≥ 2. For example,

|𝜁(𝜎 + 𝑖𝑡)| ≤ ∑
𝑁−1

𝑛=1

1
𝑛𝜎 + 𝑁1−𝜎

|𝑡|
+ 𝑘 ∑

∞

𝑛=𝑁

|𝑡|
𝑛2

≤ ∑
𝑁−1

𝑛=1

1
𝑛

+ 1
|𝑡|

+ 𝑘 ∑
∞

𝑛=𝑁

|𝑡|
𝑛2 ≤ 𝐴 log|𝑡|,

So |𝜁(𝜎 + 𝑖𝑡)| ≤ 𝐴 log|𝑡| for 1 ≤ 𝜎 ≤ 2 and |𝑡| ≥ 2. Note that the condition 𝜎 ≤ 2 is needed to
guarantee the existence of constant 𝑘 such that |𝑠| ≤ 𝑘|𝑡| for all |𝑡| ≥ 2. Similarly, |𝜁′(𝜎 + 𝑖𝑡)| ≤
𝐴(log|𝑡|)2 for |𝑡| ≥ 2.

Now we estimate 1/𝜁. Since

|𝜁3(𝜎)𝜁4(𝜎 + 𝑖𝑡)𝜁(𝜎 + 2𝑖𝑡)| ≥ 1, whenever 𝜎 ≥ 1,

we find that

|𝜁4(𝜎 + 𝑖𝑡)| ≥ 𝑐|𝜁−3(𝜎)|(log|𝑡|)−1 ≥ 𝑐′(𝜎 − 1)3(log|𝑡|)−1

for all 1 ≤ 𝜎 ≤ 2 and |𝑡| ≥ 2. Thus

|𝜁(𝜎 + 𝑖𝑡)| ≥ 𝑐′(𝜎 − 1)3/4(log|𝑡|)−1/4.

We will consider two separate cases. If 𝜎 − 1 ≥ 𝐴(log|𝑡|)−9, then

|𝜁(𝜎 + 𝑖𝑡)| ≥ 𝐴′(log|𝑡|)−27/4(log|𝑡|)−1/4 = 𝐴′(log|𝑡|)−9

so the inequality is proved. If, however, 𝜎 − 1 < 𝐴(log|𝑡|)−9, then we can select 𝜎′ > 𝜎 with 𝜎′ −
1 = 𝐴(log|𝑡|)−9. The triangle inequality then implies

|𝜁(𝜎 + 𝑖𝑡)| ≥ |𝜁(𝜎′ + 𝑖𝑡)| − |𝜁(𝜎′ + 𝑖𝑡) − 𝜁(𝜎 + 𝑖𝑡)|,

and an application of the mean value theorem,

|𝜁(𝜎′ + 𝑖𝑡) − 𝜁(𝜎 + 𝑖𝑡)| ≤ 𝑐″|𝜎′ − 𝜎|(log|𝑡|)2 ≤ 𝑐″|𝜎′ − 1|(log|𝑡|)2.

Hence

|𝜁(𝜎 + 𝑖𝑡)| ≥ 𝑐′(𝜎′ − 1)3/4(log|𝑡|)−1/4 − 𝑐″(𝜎′ − 1)(log|𝑡|)2.

We can choose 𝐴 = (𝑐′/(2𝑐″))4 to conclude

|𝜁(𝜎 + 𝑖𝑡)| ≥ 𝐴″|log(𝑡)|−9.

10. (a) Integrate by parts to get

Li(𝑥) = ∫
𝑥

2

1
log 𝑡

𝑑𝑡 = [ 𝑡
log 𝑡

]
𝑥

2
+ ∫

𝑥

2

1
(log 𝑡)2 𝑑𝑡.

Now we show that ∫𝑥
2

1
(log 𝑡)2 𝑑𝑡 = 𝑂( 𝑥

(log 𝑥)2 ). Indeed,
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∫
𝑥

2

1
(log 𝑡)2 𝑑𝑡 = ∫

√
𝑥

2

1
(log 𝑡)2 𝑑𝑡 + ∫

𝑥

√
𝑥

1
(log 𝑡)2 𝑑𝑡

≤ (
√

𝑥 − 2) 1
(log 2)2 + (𝑥 −

√
𝑥) 1

(log
√

𝑥)2 = 𝑂( 𝑥
(log 𝑥)2 ).

Therefore

Li(𝑥) = 𝑥
log 𝑥

+ 𝑂( 𝑥
log 𝑥2 )

and

𝜋(𝑥) ∼ 𝑥
log 𝑥

∼ Li(𝑥).

(b) Using integration by parts 𝑁  times,

Li(𝑥) = [ 𝑡
log 𝑡

]
𝑥

2
+ 1![ 𝑡

(log 𝑡)2 ]
𝑥

2
+ 2![ 𝑡

(log 𝑡)3 ]
𝑥

2
+ ⋯ + (𝑁 − 1)![ 𝑡

(log 𝑡)𝑁 ]
𝑥

2

+𝑁! ∫
𝑥

2

1
(log 𝑡)𝑁+1 𝑑𝑡.

In addition,

∫
𝑥

2

1
(log 𝑡)𝑁+1 𝑑𝑡 = ∫

√
𝑥

2

1
(log 𝑡)𝑁+1 𝑑𝑡 + ∫

𝑥

√
𝑥

1
(log 𝑡)𝑁+1 𝑑𝑡

≤ (
√

𝑥 − 2) 1
(log 2)𝑁+1 + (𝑥 −

√
𝑥) 2𝑁+1

(log 𝑥)𝑁+1 = 𝑂( 𝑥
(log 𝑥)𝑁+1 ).

Therefore the given asymptotic expansion holds for every integer 𝑁 > 0.

11. We already proved that (iii) ⇒ (ii) and (iv) ⇒ (iii) in Chapter 7.

(i) ⇒ (ii): Note that

𝜑(𝑥)
𝑥

≤ 𝜋(𝑥) log 𝑥
𝑥

≤ 1
𝛼

(𝜑(𝑥)
𝑥

+ 𝛼𝜋(𝑥𝛼) log 𝑥
𝑥

)

for arbitrary 𝛼 ∈ (0, 1), thus we get

1 ≤ lim inf
𝑥→∞

𝜋(𝑥) log 𝑥
𝑥

≤ lim sup
𝑥→∞

𝜋(𝑥) log 𝑥
𝑥

≤ 1
𝛼

.

Since 𝛼 is arbitrary, 𝜋(𝑥) ∼ 𝑥/ log 𝑥.

(ii) ⇒ (i): Since

𝛼 log 𝑥(𝜋(𝑥) − 𝜋(𝑥𝛼))
𝑥

≤ 𝜑(𝑥)
𝑥

≤ 𝜋(𝑥) log 𝑥
𝑥

for arbitrary 𝛼 ∈ (0, 1), we get

𝛼 ≤ lim inf
𝑥→∞

𝜑(𝑥)
𝑥

≤ lim sup
𝑥→∞

𝜑(𝑥)
𝑥

≤ 1

and 𝜑(𝑥) ∼ 𝑥.

(ii) ⇒ (iii): Since
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𝛼 log 𝑥(𝜋(𝑥) − 𝜋(𝑥𝛼))
𝑥

≤ 𝜓(𝑥)
𝑥

≤ 𝜋(𝑥) log 𝑥
𝑥

for arbitrary 𝛼 ∈ (0, 1), we get

𝛼 ≤ lim inf
𝑥→∞

𝜓(𝑥)
𝑥

≤ lim sup
𝑥→∞

𝜓(𝑥)
𝑥

≤ 1

and 𝜓(𝑥) ∼ 𝑥.

(iii) ⇒ (iv): Since 𝜑(𝑥) ∼ 𝑥, there exists 𝑥0 > 0 such that

𝑥 > 𝑥0 ⇒ |𝜓(𝑥)
𝑥

− 1| < 𝜀 ⇒ (1 − 𝜀)𝑥 < 𝜓(𝑥) < (1 + 𝜀)𝑥.

Since

𝜓1(𝑥) = ∫
𝑥

1
𝜓(𝑢)𝑑𝑢 = 𝐴0 + ∫

𝑥

𝑥0

𝜓(𝑢)𝑑𝑢, where 𝐴0 = ∫
𝑥0

1
𝜓(𝑢)𝑑𝑢,

we get

𝐴0 + (1 − 𝜀)(𝑥2

2
− 𝑥2

0
𝑥

) ≤ 𝜓1(𝑥) ≤ 𝐴0 + (1 + 𝜀)(𝑥2

2
− 𝑥2

0
𝑥

)

and

𝐴0
𝑥2/2

− 𝑥2
0

𝑥2 − 𝜀(1 − 𝑥2
0

𝑥2 ) ≤ 𝜓1(𝑥)
𝑥2/2

− 1 ≤ 𝐴0
𝑥2/2

− 𝑥2
0

𝑥2 + 𝜀(1 − 𝑥2
0

𝑥2 ).

Now taking 𝑥 large enough implies

−2𝜀 ≤ 𝜓1(𝑥)
𝑥2/2

− 1 ≤ 2𝜀.

Hence 𝜓1(𝑥) ∼ 𝑥2/2.

12. (a) Since 𝜋(𝑥) ∼ 𝑥/ log 𝑥,

lim
𝑥→∞

log 𝜋(𝑥) + log log 𝑥
log 𝑥

= lim
𝑥→∞

1 + 1
log(𝑥)

log( 𝜋(𝑥)
𝑥/ log 𝑥

) = 1.

Therefore log 𝜋(𝑥) + log log 𝑥 ∼ log 𝑥.
(b) As a consequence, log 𝜋(𝑥) ∼ log 𝑥 since

lim
𝑥→∞

log 𝜋(𝑥)
log 𝑥

= lim
𝑥→∞

log 𝜋(𝑥) + log log 𝑥
log 𝑥

− log log 𝑥
log 𝑥

= 1.

Thus

lim
𝑥→∞

𝑥
𝜋(𝑥) log 𝜋(𝑥)

= lim
𝑥→∞

𝑥/ log 𝑥
𝜋(𝑥)

⋅ log 𝑥
log 𝜋(𝑥)

= 1.

Put 𝑥 = 𝑝𝑛 and 𝜋(𝑝𝑛) = 𝑛 gives

lim
𝑛→∞

𝑝𝑛
𝑛 log 𝑛

= 1,

hence 𝑝(𝑛) ∼ 𝑛 log 𝑛.
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Chapter 8. Conformal Mappings

1. First suppose holomorphic map 𝑓 : 𝑈 → 𝑉  is local bijection on 𝑈 . For any 𝑧0 ∈ 𝑈 , there exists an open
disc 𝐷 ⊂ 𝑈  centered at 𝑧0 such that 𝑓 : 𝐷 → 𝑓(𝐷) is bijection. Applying Proposition 1.1 to 𝑓 : 𝐷 →
𝑓(𝐷) gives 𝑓 ′(𝑧) ≠ 0 for all 𝑧 ∈ 𝐷. In particular, 𝑓 ′(𝑧0) ≠ 0.

Now suppose 𝑓 ′(𝑧) ≠ 0 for all 𝑧 ∈ 𝑈 . Choose any 𝑧0 ∈ 𝑈  and write

𝑓(𝑧) − 𝑓(𝑧0) = 𝑎(𝑧 − 𝑧0) + 𝐺(𝑧) for all 𝑧 near 𝑧0,

with 𝑎 ≠ 0, and 𝐺 vanishing to order ≥ 2 at 𝑧0. Consider the small disc 𝐷 centered at 𝑧0 such that

|𝑎(𝑧 − 𝑧0)| > |𝐺(𝑧)| for all 𝑧 ∈ 𝜕𝐷.

For any 𝑤 ∈ 𝑉 , define 𝐹(𝑧) = 𝑎(𝑧 − 𝑧0) − 𝑤. Observe that |𝐹 (𝑧)| ≥ |𝑎(𝑧 − 𝑧0)| > |𝐺(𝑧)| for all 𝑧 ∈
𝜕𝐷 and 𝐹  has at most 1 root in 𝐷. Hence 𝑓(𝑧) − 𝑓(𝑧0) − 𝑤 = 0 has at most 1 root in 𝐷 by Rouché’s
theorem, thus 𝑓 : 𝐷 → 𝑓(𝐷) is bijection.

2. We can write 𝐹(𝑧) = (𝑔(𝑧))2 because 𝐹(𝑧0) = 𝐹 ′(𝑧0) = 0. Since 𝑔′(𝑧0) = (𝐹″(𝑧0))
1/2 ≠ 0, 𝑔 is bijec-

tive near 𝑧0. Now consider two curves

Γ1 : [−𝛿, 𝛿] → ℂ,  𝑡 ↦ 𝑔−1(𝑡),

Γ2 : [−𝛿, 𝛿] → ℂ,  𝑡 ↦ 𝑔−1(𝑖𝑡)

for small enough 𝛿. Then

𝐹|Γ1
= 𝐹(𝑔−1(𝑡)) = 𝑡2, 𝐹 |Γ2

= 𝐹(𝑔−1(𝑖𝑡)) = −𝑡2,

therefore 𝐹  restricted to Γ1 is real and has a minimum at 𝑧0, while 𝐹  restricted to Γ2 is also real but has
maximum at 𝑧0. Moreover,

(𝑔−1)′(0) = 1/𝑔′(𝑧0),
𝑑(𝑔−1(𝑖𝑡))

𝑑𝑡
|
𝑡=0

= 𝑖/𝑔′(𝑧0),

hence two curves are orthogonal at 𝑧0.

3. Consider any two curves 𝛾0, 𝛾1 : [𝑎, 𝑏] → 𝑉  such that 𝛾0(𝑎) = 𝛾1(𝑎) and 𝛾0(𝑏) = 𝛾1(𝑏). Since 𝑈  and 𝑉
are conformally equivalent, there exists conformal map 𝑓 : 𝑈 → 𝑉 . Then two curves defined by

𝛾′
0(𝑡) = 𝑓−1(𝛾0(𝑡)), 𝛾′

1(𝑡) = 𝑓−1(𝛾1(𝑡))

lies in 𝑈  and have common end-points. Since 𝑈  is simply connected, 𝛾′
0 and 𝛾′

1 is homotopic so there
exists 𝛾′(𝑠, 𝑡) : [0, 1] × [𝑎, 𝑏] → 𝑈  such that

𝛾′(0, 𝑡) = 𝛾′
0(𝑡), 𝛾′(1, 𝑡) = 𝛾′

1(𝑡), 𝛾′(𝑠, 𝑎) = 𝛾′
0(𝑎), 𝛾′(𝑠, 𝑏) = 𝛾′

0(𝑏)

and 𝛾′ is jointly continuous in 𝑠 ∈ [0, 1] and 𝑡 ∈ [𝑎, 𝑏]. Now let 𝛾(𝑠, 𝑡) = 𝑓(𝛾′(𝑠, 𝑡)), then 𝛾 is homotopy
of two curves 𝛾0 and 𝛾1 because 𝑓  is holomorphic. Hence 𝑉  is simply connected.

4. Define 𝑓 : 𝔻 → ℂ as

𝑓(𝑤) = (𝐺(𝑤) − 𝑖)2, where 𝐺(𝑤) = 𝑖1 − 𝑤
1 + 𝑤

.

Note that 𝐺 : 𝔻 → ℍ is conformal map. We prove that 𝑓  is a holomorphic surjection. First suppose 𝑧 ∈
ℝ≥0. Since 

√
𝑧 + 𝑖 ∈ ℍ, there exists 𝑤 ∈ 𝔻 such that 𝐺(𝑤) =

√
𝑧 + 𝑖 thus 𝑧 = (𝐺(𝑤) − 𝑖)2 = 𝑓(𝑤).

Otherwise, if 𝑧 ∈ ℂ − ℝ≥0, then we can define 𝑧1/2 as
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𝑧1/2 = 𝑟1/2𝑒𝑖𝜃/2 where 𝑧 = 𝑟𝑒𝑖𝜃,  0 < 𝜃 < 2𝜋.

Since 0 < arg(𝑧1/2) < 𝜋, we have 𝑧1/2 + 𝑖 ∈ ℍ, hence there exists 𝑤 ∈ 𝔻 such that 𝐺(𝑤) = 𝑧1/2 + 𝑖
and 𝑧 = (𝐺(𝑤) − 𝑖)2 = 𝑓(𝑤).

5. Obviously, 𝑓  is holomorphic in upper half-disc. 𝑓  is injective, because 𝑓(𝑧1) = 𝑓(𝑧2) implies

𝑧1 + 1
𝑧1

= 𝑧2 + 1
𝑧2

 ⇒  (𝑧1 − 𝑧2)(1 − 1
𝑧1𝑧2

) = 0 ⇒  𝑧1 = 𝑧2.

In addition, 𝑓  is surjective. To see this, choose any 𝑤 ∈ ℍ. The equation 𝑓(𝑧) = 𝑤 reduces to the
quadratic equation 𝑧2 + 2𝑤𝑧 + 1 = 0. This equation has two distinct roots in ℂ because 𝑤 ∈ ℍ. The
product of two zeros is 1, so we call 𝑟𝑒𝑖𝜃, 1

𝑟𝑒−𝑖𝜃 for 𝑟 > 0. Then

(𝑟 − 1
𝑟
) sin 𝜃 = Im(𝑟𝑒𝑖𝜃 + 1

𝑟
𝑒−𝑖𝜃) = Im(−2𝑤) < 0,

hence 𝑟 < 1. So there exists 𝑧 ∈ {𝑧 : |𝑧| < 1, Im(𝑧) > 0} such that 𝑓(𝑧) = 𝑤. Finally, 𝑓  is a conformal
map by definition.

6. Let 𝐹(𝑥, 𝑦) = 𝛼(𝑥, 𝑦) + 𝑖𝛽(𝑥, 𝑦). By Cauchy-Riemann equations,

𝜕𝛼
𝜕𝑥

= 𝜕𝛽
𝜕𝑦

, 𝜕𝛼
𝜕𝑦

− 𝜕𝛽
𝜕𝑥

and ∆𝛼 = ∆𝛽 = 0. Since

𝜕2

𝜕𝑥2 (𝑢 ∘ 𝐹) = (𝜕2𝑢
𝜕𝛼2

𝜕𝛼
𝜕𝑥

+ 𝜕2𝑢
𝜕𝛽𝜕𝛼

𝜕𝛽
𝜕𝑥

)𝜕𝛼
𝜕𝑥

+ 𝜕𝑢
𝜕𝛼

𝜕2𝛼
𝜕𝑥2 + ( 𝜕2𝑢

𝜕𝛼𝜕𝛽
𝜕𝛼
𝜕𝑥

+ 𝜕2𝑢
𝜕𝛽2

𝜕𝛽
𝜕𝑥

)𝜕𝛽
𝜕𝑥

+ 𝜕𝑢
𝜕𝛽

𝜕2𝛽
𝜕𝑥2 ,

𝜕2

𝜕𝑦2 (𝑢 ∘ 𝐹) = (𝜕2𝑢
𝜕𝛼2

𝜕𝛼
𝜕𝑦

+ 𝜕2𝑢
𝜕𝛽𝜕𝛼

𝜕𝛽
𝜕𝑦

)𝜕𝛼
𝜕𝑦

+ 𝜕𝑢
𝜕𝛼

𝜕2𝛼
𝜕𝑦2 + ( 𝜕2𝑢

𝜕𝛼𝜕𝛽
𝜕𝛼
𝜕𝑦

+ 𝜕2𝑢
𝜕𝛽2

𝜕𝛽
𝜕𝑦

)𝜕𝛽
𝜕𝑦

+ 𝜕𝑢
𝜕𝛽

𝜕2𝛽
𝜕𝑦2 ,

we get

∆(𝑢 ∘ 𝐹) = ∆𝑢 ⋅ ((𝜕𝛼
𝜕𝑥

)
2

+ (𝜕𝛼
𝜕𝑦

)
2

) + 2 𝜕2𝑢
𝜕𝛼𝜕𝛽

(𝜕𝛽
𝜕𝑥

𝜕𝛼
𝜕𝑥

+ 𝜕𝛽
𝜕𝑦

𝜕𝛼
𝜕𝑦

)

+(𝜕𝑢
𝜕𝛼

)∆𝛼 + (𝜕𝑢
𝜕𝛽

)∆𝛽

= 0.

7. (a) If 𝑟𝑒𝑖𝜃 = 𝐺(𝑖𝑦), then

𝑟𝑒𝑖𝜃 = 𝐺(𝑖𝑦) = 𝑖 − 𝑒𝜋𝑖𝑦

𝑖 + 𝑒𝜋𝑖𝑦 = 𝑖 − cos 𝜋𝑦 − 𝑖 sin 𝜋𝑦
𝑖 + cos 𝜋𝑦 + 𝑖 sin 𝜋𝑦

= (𝑖 − cos 𝜋𝑦 − 𝑖 sin 𝜋𝑦)(−𝑖 + cos 𝜋𝑦 − 𝑖 sin 𝜋𝑦)
(cos 𝜋𝑦)2 + (1 + sin 𝜋𝑦)2 = 𝑖 cos 𝜋𝑦

1 + sin 𝜋𝑦
.

Furthermore, (𝑒𝑖𝜃)2 = 𝑒2𝑖𝜃 = −1 implies that

𝑟2 = 𝑒−2𝑖𝜃 ⋅ 𝑖2 cos2 𝜋𝑦
(1 + sin 𝜋𝑦)2 = 1 − sin2 𝜋𝑦

(1 + sin 𝜋𝑦)2 = 1 − sin 𝜋𝑦
1 + sin 𝜋𝑦

,

and
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𝑃𝑟(𝜃 − 𝜑) = 1 − 𝑟2

1 − 2𝑟 sin 𝜑 + 𝑟2 = 2 sin 𝜋𝑦
2 − 2(1 + sin 𝜋𝑦)𝑟 sin 𝜑

= sin 𝜋𝑦
1 − cos 𝜋𝑦 sin 𝜑

for 𝜃 = 𝜋/2,

𝑃𝑟(𝜃 − 𝜓) = 1 − 𝑟2

1 + 2𝑟 sin 𝜑 + 𝑟2 = 2 sin 𝜋𝑦
2 + 2(1 + sin 𝜋𝑦)𝑟 sin 𝜑

= sin 𝜋𝑦
1 − cos 𝜋𝑦 sin 𝜑

for 𝜃 = −𝜋/2.

(b) Since

𝑒𝑖𝜑 = 𝑖 − 𝑒𝜋𝑡

𝑖 + 𝑒𝜋𝑡 = −
(𝑒𝜋𝑡 − 𝑖)2

𝑒2𝜋𝑡 + 1
 ⇒  sin 𝜑 = Im(𝑒𝑖𝜑) = sech 𝜋𝑡,

cos 𝜑 = ± tanh 𝜋𝑡. Observe that

0 ≤ 𝜑 ≤ 𝜋/2 : cos 𝜑 ≥ 0, 𝑡 ≤ 0, tanh 𝜋𝑡 ≤ 0,
𝜋/2 < 𝜑 ≤ 𝜋 : cos 𝜑 < 0, 𝑡 > 0, tanh 𝜋𝑡 > 0.

Therefore cos 𝜑 = − tanh 𝜋𝑡 and 𝑑𝜑/𝑑𝑡 = 𝜋 sech 𝜋𝑡. Hence

1
2𝜋

∫
𝜋

0
𝑃𝑟(𝜃 − 𝜑)𝑓0(𝜑)𝑑𝜑 = 1

2𝜋
∫

𝜋

0

sin 𝜋𝑦
1 − cos 𝜋𝑦 sin 𝜑

𝑓0(𝜑)𝑑𝜑

= sin 𝜋𝑦
2𝜋

∫
∞

−∞

𝑓0(𝑡)
1 − cos 𝜋𝑦 sech 𝜋𝑡

𝜋 sech 𝜋𝑡𝑑𝑡

= sin 𝜋𝑦
2

∫
∞

−∞

𝑓0(𝑡)
cosh 𝜋𝑡 − cos 𝜋𝑦

𝑑𝑡.

(c) Now substitute 𝑡 = 𝐹(𝑒𝑖𝜑) − 𝑖, then sin 𝜑 = − sech 𝜋𝑡 and 𝑑𝜑/𝑑𝑡 = −𝜋 cosh 𝜋𝑡. Therefore

1
2𝜋

∫
0

−𝜋
𝑃𝑟(𝜃 − 𝜑)𝑓0(𝜑)𝑑𝜑 = 1

2𝜋
∫

0

−𝜋

sin 𝜋𝑦
1 − cos 𝜋𝑦 sin 𝜑

𝑓1(𝜑)𝑑𝜑

= sin 𝜋𝑦
2𝜋

∫
−∞

∞

𝑓1(𝑡)
1 − cos 𝜋𝑦(− sech 𝜋𝑡)

(−𝜋 sech 𝜋𝑡)𝑑𝑡

= sin 𝜋𝑦
2

∫
∞

−∞

𝑓1(𝑡)
cosh 𝜋𝑡 + cos 𝜋𝑦

𝑑𝑡.

8. The conformal maps indicated in Figure 11 are

𝐹1(𝑧) = 𝑧 − 1
𝑧 + 1

,  𝐹2(𝑧) = log 𝑧,  𝐹3(𝑧) = 1
𝑖
𝑧 − 𝜋

2
,  𝐹4(𝑧) = sin 𝑧,  𝐹5(𝑧) = 𝑧 − 1.

Observe that arg(𝑧)/𝜋 is harmonic on the upper half-plane, equals 0 on the positive real axis, and 1 on
the negative real axis. Thus the harmonic function

𝑢 = 𝐹−1
1 ∘ 𝐹−1

2 ∘ 𝐹−1
3 ∘ 𝐹−1

4 ∘ 𝐹−1
5 ∘ (𝑧 ↦ 1

𝜋
arg(𝑧))

satisfies the given condition.

9. Since 𝑓(𝑧) = (𝑖 + 𝑧)/(𝑖 − 𝑧) is holomorphic in 𝔻, 𝑢 = Re(𝑓) is harmonic in unit disc. Furthermore,

𝑢(𝑥, 𝑦) = Re(𝑖 + 𝑧
𝑖 − 𝑧

) = Re( 𝑥 + 𝑖(1 + 𝑦)
−𝑥 + 𝑖(1 − 𝑦)

) = 1 − 𝑥2 − 𝑦2

𝑥2 + (1 − 𝑦)2 ,

thus 𝑢 vanishes on its boundary.

10. Recall the conformal map between 𝔻 and ℍ, 𝐹 ∗(𝑧) = 𝑖−𝑧
𝑖+𝑧  and 𝐺(𝑤) = 𝑖1−𝑤

1+𝑤 . Define function
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𝑓 : 𝔻 → ℂ, 𝑓(𝑤) = 𝐹(𝐺(𝑤)) = 𝐹(𝑖1 − 𝑤
1 + 𝑤

).

Since |𝑓(𝑤)| ≤ 1 for all 𝑤 ∈ 𝔻 and 𝑓(0) = 𝐹(𝑖) = 0, by Schwarz lemma,

|𝑓(𝑤)| ≤ |𝑤| for all 𝑤 ∈ 𝔻.

Now substitute 𝑤 = 𝐹 ∗(𝑧) to get

|𝐹 (𝑧)| = |𝑓(𝐹 ∗(𝑧))| ≤ |𝐹 ∗(𝑧)| = |𝑧 − 𝑖
𝑧 + 𝑖

| for all 𝑧 ∈ ℍ.

11. Define 𝑔 : 𝔻 → 𝔻 and ℎ : 𝔻 → 𝔻 as

𝑔(𝑤) = 1
𝑀

𝑓(𝑅𝑤), ℎ(𝑤) = 𝑔(𝑤) − 𝑔(0)
1 − 𝑔(0)𝑔(𝑤)

.

Since ℎ(0) = 0, by Schwarz lemma, |ℎ(𝑤)| ≤ |𝑤| for all 𝑤 ∈ 𝔻. Letting 𝑧 = 𝑅𝑤 gives

| 𝑔(𝑤) − 𝑔(0)
1 − 𝑔(0)𝑔(𝑤)

| = |
1
𝑀 𝑓(𝑅𝑤) − 1

𝑀 𝑓(0)
1 − 1

𝑀 𝑓(0) 1
𝑀 𝑓(𝑅𝑤)

| = 𝑀| 𝑓(𝑧) − 𝑓(0)
𝑀2 − 𝑓(0)𝑓(𝑧)

| ≤ |𝑧|
𝑅

.

Therefore given inequality holds.

12. (a) Define 𝑔 : 𝔻 → 𝔻 as 𝑔 = 𝜓−1
𝛼 ∘ 𝑓 ∘ 𝜓𝛼. Let 𝛾 = 𝜓−1

𝛼 (𝛽) ∈ 𝔻 − {0}, then

𝑔(0) = 𝜓−1
𝛼 (𝑓(𝜓𝛼(0))) = 𝜓−1

𝛼 (𝑓(𝛼)) = 𝜓−1
𝛼 (𝛼) = 0,

𝑔(𝛾) = 𝜓−1
𝛼 (𝑓(𝜓𝛼(𝛾))) = 𝜓−1

𝛼 (𝑓(𝛽)) = 𝜓−1
𝛼 (𝛽) = 𝛾.

Hence 𝑔 is identity by Schwarz lemma. Therefore 𝑓 = 𝜓𝛼 ∘ 𝑔 ∘ 𝜓−1
𝛼 = 𝜓𝛼 ∘ id𝔻 ∘ 𝜓−1

𝛼 = id𝔻.
(b) No. Consider the function 𝑓 : 𝔻 → 𝔻 defined as

𝑓 = 𝐹 ∘ (𝑧 ↦ 𝑧 + 1) ∘ 𝐺,

where 𝐹(𝑧) = 𝑖−𝑧
𝑖+𝑧 , 𝐺(𝑤) = 𝑖(1−𝑤)

1+𝑤  is conformal map between 𝔻 and ℍ. Then 𝑓  does not have fixed
point. Otherwise, it has fixed point 𝑤, then

𝐹(𝐺(𝑤) + 1) = 𝑤 ⇒  𝐺(𝑤) + 1 = 𝐺(𝑤),

which is contradiction.

13. (a) Consider the function 𝑔 = 𝜓𝑓(𝑤) ∘ 𝑓 ∘ 𝜓−1
𝑤 . Since 𝑔 : 𝔻 → 𝔻 and 𝑔(0) = 0, |𝑔(𝑧)| ≤ |𝑧| for all 𝑧 ∈ 𝔻

by Schwarz lemma. Hence

|(𝜓𝑓(𝑤) ∘ 𝑓 ∘ 𝜓−1
𝑤 )(𝑧)| ≤ |𝑧| ⇒  |(𝜓𝑓(𝑤) ∘ 𝑓)(𝑧)| ≤ |𝜓𝑤(𝑧)| 

⇒  𝜌(𝑓(𝑧), 𝑓(𝑤)) ≤ 𝜌(𝑧, 𝑤) for all 𝑧, 𝑤 ∈ 𝔻.

(b) Since

| 𝑓(𝑧) − 𝑓(𝑤)
1 − 𝑓(𝑤)𝑓(𝑧)

| ≤ | 𝑧 − 𝑤
1 − 𝑤𝑧

| ⇒  |
𝑓(𝑧)−𝑓(𝑤)

𝑧−𝑤

1 − 𝑓(𝑤)𝑓(𝑧)
| ≤ 1

|1 − 𝑤𝑧|
,

taking the limit 𝑤 → 𝑧 gives

|𝑓 ′(𝑧)|
1 − |𝑓(𝑧)|2

≤ 1
1 − |𝑧|2

.
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14. Note that 𝐹(𝑧) = 𝑖−𝑧
𝑖+𝑧  and 𝐺(𝑤) = 𝑖1−𝑤

1+𝑤  is conformal map between 𝔻 and ℍ. Suppose 𝑓  is conformal
map from ℍ to 𝔻. Then 𝑤 ↦ 𝑓(𝐺(𝑤)) is conformal map from 𝔻 to 𝔻. Hence there exists 𝜃 ∈ ℝ and 𝛼 ∈
𝔻 such that

𝑓(𝐺(𝑤)) = 𝑒𝑖𝜃 𝛼 − 𝑤
1 − 𝛼𝑤

.

Now choose 𝑧 = 𝐺(𝑤) then

𝑓(𝑧) = 𝑒𝑖𝜃 𝛼 − 𝐹(𝑧)
1 − 𝛼𝐹(𝑧)

= 𝑒𝑖𝜃 𝛼 − 𝑖−𝑧
𝑖+𝑧

1 − 𝛼 𝑖−𝑧
𝑖+𝑧

= 𝑒𝑖𝜃 (𝛼 + 1)𝑧 + 𝑖(𝛼 − 1)
(𝛼 + 1)𝑧 + 𝑖(1 − 𝛼)

= 𝑒𝑖𝜃 𝑧 − 𝛽
𝑧 − 𝛽

,

where 𝛽 = 𝑖1−𝛼
1+𝛼 = 𝐺(𝛼) ∈ ℍ.

15. (a) Since Φ is an automorphism of ℍ, there exists 𝑎, 𝑏, 𝑐, 𝑑 such that Φ(𝑧) = (𝑎𝑧 + 𝑏)/(𝑐𝑧 + 𝑑). Then
the equation

𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

= 𝑧 ⇒  𝑐𝑧2 + (𝑑 − 𝑎)𝑧 − 𝑏 = 0

has three distinct real roots, so 𝑐 = 𝑑 − 𝑎 = 𝑏 = 0. Therefore Φ(𝑧) = 𝑎𝑧/𝑑 = 𝑧, which is identity.
(b) Observe that the equation 𝑦 = 𝑎𝑥+𝑏

𝑐𝑥+𝑑 ⇔ 𝑐𝑦𝑥 − 𝑎𝑥 + 𝑑𝑦 − 𝑏 = 0 is hyperbola. Since this function
passes through the (𝑥𝑗, 𝑦𝑗), this equation is equivalent to

|
|
|
|
|

(
((
((
((

𝑥𝑦
𝑥1𝑦1
𝑥2𝑦2
𝑥3𝑦3

𝑥
𝑥1
𝑥2
𝑥3

𝑦
𝑦1
𝑦2
𝑦3

1
1
1
1)
))
))
))

|
|
|
|
|
= 0.

by means of a Laplace expansion along the first row, we get

𝑎 = 𝑥1𝑦1(𝑦2 − 𝑦3) + 𝑥2𝑦2(𝑦3 − 𝑦1) + 𝑥3𝑦3(𝑦1 − 𝑦2),

𝑏 = 𝑥1𝑦1(𝑥2𝑦3 − 𝑥3𝑦2) + 𝑥2𝑦2(𝑥3𝑦1 − 𝑥1𝑦3) + 𝑥3𝑦3(𝑥1𝑦2 − 𝑥2𝑦1),

𝑐 = 𝑦1(𝑥3 − 𝑥2) + 𝑦2(𝑥1 − 𝑥3) + 𝑦3(𝑥2 − 𝑥1),

𝑑 = 𝑥1𝑦1(𝑥2 − 𝑥3) + 𝑥2𝑦2(𝑥3 − 𝑥1) + 𝑥3𝑦3(𝑥1 − 𝑥2).

Note that 𝑎𝑑 − 𝑏𝑐 = (𝑥1 − 𝑥2)(𝑥1 − 𝑥3)(𝑥2 − 𝑥3)(𝑦1 − 𝑦2)(𝑦1 − 𝑦3)(𝑦2 − 𝑦3) > 0. Therefore

(𝑎′

𝑐′
𝑏′

𝑑′) = 1
√(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)(𝑥2 − 𝑥3)(𝑦1 − 𝑦2)(𝑦1 − 𝑦3)(𝑦2 − 𝑦3)

(𝑎
𝑐

𝑏
𝑑)

satisfies the condition 𝑎′𝑑′ − 𝑏′𝑐′ = 1, so there exists (a unique) automorphism Φ of ℍ so that
Φ(𝑥𝑗) = 𝑦𝑗.

Even if 𝑦3 < 𝑦1 < 𝑦2 or 𝑦2 < 𝑦3 < 𝑦2,

(𝑥1 − 𝑥2)(𝑥1 − 𝑥3)(𝑥2 − 𝑥3)(𝑦1 − 𝑦2)(𝑦1 − 𝑦3)(𝑦2 − 𝑦3) > 0,

therefore the conclusion is the same.

16. (a) Given 𝜃 ∈ ℝ,

𝑓−1(𝑒𝑖𝜃𝑓(𝑧)) = 𝑖
1 − 𝑒𝑖𝜃 𝑖−𝑧

𝑖+𝑧

1 + 𝑒𝑖𝜃 𝑖−𝑧
𝑖+𝑧

=
𝑖(1 + 𝑒𝑖𝜃)𝑧 − (1 − 𝑒𝑖𝜃)
(1 − 𝑒𝑖𝜃)𝑧 + 𝑖(1 + 𝑒𝑖𝜃)

=
𝑒𝑖𝜃/2+𝑒−𝑖𝜃/2

2 𝑧 + 𝑒𝑖𝜃/2−𝑒−𝑖𝜃/2

2𝑖 𝑧
−𝑒𝑖𝜃/2−𝑒−𝑖𝜃/2

2𝑖 𝑧 + 𝑒𝑖𝜃/2+𝑒−𝑖𝜃/2

2

= cos(𝜃/2)𝑧 + sin(𝜃/2)
− sin(𝜃/2)𝑧 + cos(𝜃/2)

.
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Hence

(𝑎
𝑐

𝑏
𝑑) = ( cos(𝜃/2)

− sin(𝜃/2)
sin(𝜃/2)
cos(𝜃/2)).

(b) Given 𝛼 = 𝑟 + 𝑖𝑠 ∈ 𝔻, then

𝜓𝛼(𝑓(𝑧)) =
𝛼 − 𝑖−𝑧

𝑖+𝑧

1 − 𝛼 𝑖−𝑧
𝑖+𝑧

= (𝛼 + 1)𝑧 + (𝛼 − 1)𝑖
(1 + 𝛼)𝑧 + (1 − 𝛼)𝑖

and

𝑓−1(𝜓𝛼(𝑓(𝑧))) = 𝑖
1 − (𝛼+1)𝑧+(𝛼−1)𝑖

(1+𝛼)𝑧+(1−𝛼)𝑖

1 + (𝛼+1)𝑧+(𝛼−1)𝑖
(1+𝛼)𝑧+(1−𝛼)𝑖

= 𝑖(𝛼 − 𝛼)𝑧 + (2 − 𝛼 − 𝛼)𝑖
(2 + 𝛼 + 𝛼)𝑧 + (𝛼 − 𝛼)𝑖

= 𝑠𝑧 − (1 − 𝑟)
(1 + 𝑟)𝑧 − 𝑠

.

Therefore

(𝑎
𝑐

𝑏
𝑑) = 1

√1 − |𝛼|2
( 𝑠

1 + 𝑟
−(1 − 𝑟)

−𝑠 ).

(c) By Theorem 2.2, there exist 𝜃 ∈ ℝ, 𝛼 ∈ 𝔻 such that 𝑔(𝑧) = 𝑒𝑖𝜃𝜓𝛼(𝑧). Apply (a), (b), then

𝑓−1 ∘ 𝑔 ∘ 𝑓 = 𝑓−1 ∘ (𝑧 ↦ 𝑒𝑖𝜃𝑧) ∘ 𝜓𝛼 ∘ 𝑓 = (𝑓−1 ∘ (𝑧 ↦ 𝑒𝑖𝜃𝑧) ∘ 𝑓) ∘ (𝑓−1 ∘ 𝜓𝛼 ∘ 𝑓)

= (𝑧 ↦ 𝑎1𝑧 + 𝑏1
𝑐1𝑧 + 𝑑1

) ∘ (𝑧 ↦ 𝑎2𝑧 + 𝑏2
𝑐2𝑧 + 𝑑2

) = (𝑧 ↦ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

)

where 𝑎𝑑 − 𝑏𝑐 = 1.

17. We change the variable 𝑤 = 𝜓𝛼(𝑧). Since the determinant of the Jacobian is simply |𝜓′
𝛼|2,

1
𝜋

∬
𝔻

|𝜓′
𝛼|2𝑑𝑥𝑑𝑦 = 1

𝜋
∬

𝜓𝛼(𝔻)
𝑑𝑥𝑑𝑦 = 1

𝜋
∬

𝔻
𝑑𝑥𝑑𝑦 = 1.

Since

𝜓′
𝛼(𝑧) = − 1 − |𝛼|2

(1 − 𝛼𝑧)2  ⇒  |𝜓′
𝛼(𝑧)| = 1 − |𝛼|2

(1 − 𝛼𝑧)2 ,

the second integral is

1
𝜋

∬
𝔻
|𝜓′

𝛼|𝑑𝑥𝑑𝑦 = 1 − |𝛼|2

𝜋
∫

1

0
∫

2𝜋

0

1
(1 − 𝛼𝑟𝑒𝑖𝜃)(1 − 𝛼𝑟𝑒−𝑖𝜃)

𝑟𝑑𝜃𝑑𝑟.

Using residue formula for 𝑓(𝑧) = 1/(1 − 𝛼𝑟𝑧)(1 − 𝛼𝑧),

∫
1

0
∫

2𝜋

0

1
(1 − 𝛼𝑟𝑒𝑖𝜃)(1 − 𝛼𝑟𝑒−𝑖𝜃)

𝑟𝑑𝜃𝑑𝑟 = ∫
1

0
𝑟(∫

2𝜋

0

1
(1 − 𝛼𝑟𝑒𝑖𝜃)(1 − 𝛼𝑟𝑒−𝑖𝜃)

𝑑𝜃)𝑑𝑟

= ∫
1

0
𝑟(∫

𝜕𝔻

1
𝑖(1 − 𝛼𝑟𝑧)(𝑧 − 𝛼𝑟)

𝑑𝑧)𝑑𝑟

= ∫
1

0
𝑟(2𝜋𝑖 ⋅ 1

𝑖
⋅ 1
1 − 𝛼𝑟 ⋅ 𝛼𝑟

)𝑑𝑟 = ∫
1

0

2𝜋𝑟
1 − |𝛼|2𝑟2 𝑑𝑡

= 𝜋
|𝛼|2

log 1
(1 − |𝛼|)2 .

Hence
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1
𝜋

∬
𝔻
|𝜓′

𝛼|𝑑𝑥𝑑𝑦 = 1 − |𝛼|2

|𝛼|2
log 1

(1 − |𝛼|)2 .

18. Remember that in the proof of Theorem 4.2, the key geometric property of the unit disc and polygonal
region is that if 𝑧0 belongs to the boundary of Ω, and 𝐶 is any small circle centered at 𝑧0, then 𝐶 ∩ Ω
consists of an arc. Note that piecewise-smooth closed curve 𝛾 also has this property because

𝑧(𝑡) = 𝑧(𝑡0) + 𝑧′(𝑡0)(𝑡 − 𝑡0) + 𝑜(|𝑡 − 𝑡0|)

at any point 𝑧0 = 𝑧(𝑡0) on 𝛾. Therefore we can generalize Theorem 4.2 to the piecewise-smooth closed
curve.

19. Suppose any two curves 𝛾0, 𝛾1 : [0, 1] → ℂ lying in Ω = ℂ − ∪𝑛
𝑘=1 {𝐴𝑘 + 𝑖𝑦 : 𝑦 ≤ 0} and write 𝛾𝑗(𝑧) =

𝑟𝑗(𝑧) + 𝑖𝑠𝑗(𝑧). First, we show that for every small 𝜀 > 0, there exists 𝐴𝑗 such that

𝑠𝑗(𝑡) + 𝐴𝑗𝑡(1 − 𝑡) < 0 ⇒  |𝑟𝑗(𝑡) − 𝑟(0)| < 𝜀 or |𝑟𝑗(𝑡) − 𝑟(1)| < 𝜀.

Since 𝑟𝑗 is continuous, there exists 𝛿 > 0 such that

𝑡 < 𝛿 or 𝑡 > 1 − 𝛿 ⇒  |𝑟𝑗(𝑡) − 𝑟(0)| < 𝜀 or |𝑟𝑗(𝑡) − 𝑟(1)| < 𝜀.

Now let 𝐴𝑗 = sup{−𝑠𝑗(𝑡)}/(𝛿(1 − 𝛿)). Then

𝛿 ≤ 𝑡 ≤ 1 − 𝛿 ⇒  −𝑠𝑗(𝑡) ≤ 𝐴𝑗𝛿(1 − 𝛿) ≤ 𝐴𝑗𝑡(1 − 𝑡) ⇒  𝑠𝑗(𝑡) + 𝐴𝑗𝑡(1 − 𝑡) ≥ 0.

Hence the desired proof is obtained.

Let 𝐴 = max{𝐴0, 𝐴1} and define 𝛾∗
𝑗 (𝑡) = 𝛾𝑗(𝑡) + 𝑖𝐴𝑡(1 − 𝑡) (𝑗 = 0, 1). Note that 𝛾0 and 𝛾∗

0 are homo-
topic, 𝛾1 and 𝛾∗

1 are homotopic. Since both 𝛾∗
0 and 𝛾∗

1 are contained in Ω′ = ℍ ∪ {𝑧 ∈ ℂ : |Re(𝑧) −
𝑟(0)| < 𝜀 or |Re(𝑧) − 𝑟(1)| < 𝜀}, and Ω′ is simply connected by Problem 4, Chapter 3, 𝛾∗

0 and 𝛾∗
1 are

homotopic. Therefore 𝛾0 and 𝛾1 are homotopic, and conclude that Ω is simply connected.

20. (a) If 𝜆 ≠ 0, 1, then the integral is equal to

∫
𝑧

0

𝑑𝜁
𝜁1/2(𝜁 − 1)1/2(𝜁 − 𝜆)1/2 ,

which is Schwarz-Christoffel integral with 𝛽1 = 𝛽2 = 𝛽3 = 1/2. Since ∑ 𝛽𝑘 = 3/2, By Proposi7
tion 4.1, this function maps the upper-half plane conformally to a rectangle. Moreover, the angle of
the vertices is 𝛼1𝜋 = 𝛼2𝜋 = 𝛼3𝜋 = 𝛼4𝜋 = 𝜋/2, so the image is rectangle.

Note. In the case of 𝜆 = 0, the integral diverges and the definition does not seem to be valid.
(b) Since the image is a rectangle, the lengths of the two opposite sides are equal. The lengths of the two

adjacent sides are

∫
1

0

1
√𝑥(1 − 𝑥2)

𝑑𝑥 and ∫
∞

1

1
√𝑢(1 − 𝑢2)

𝑑𝑢,

respectively, and we can see that they are equal through changing the variables 𝑢 = 1/𝑥. Hence the
image is a square. Furthermore, changing the variables 𝑥2 = 𝑡, the side length is

∫
1

0
𝑥−1/2(1 − 𝑥2)−1/2𝑑𝑥 = ∫

1

0
𝑡−1/4(1 − 𝑡)−1/2 𝑑𝑡

2𝑡1/2 = 1
2

∫
1

0
𝑡−3/4(1 − 𝑡)−1/2𝑑𝑡

= 1
2
𝐵(1

4
, 1
2
) = 1

2
Γ(1/4)Γ(1/2)

Γ(3/4)
= 1

2
Γ2(1/4)√

2𝜋
= Γ2(1/4)

2
√

2𝜋
.
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21. (a) This is Schwarz-Christoffel integral with 1 < 𝛽1 + 𝛽2 < 2, it maps ℍ to a triangle whose vertices
are the images of 0, 1, ∞, and with angles 𝛼1𝜋, 𝛼2𝜋, 𝛼3𝜋 with 𝛼𝑗 + 𝛽𝑗 = 1 and 𝛽1 + 𝛽2 + 𝛽3 = 2.

(b) The images of the two intervals (−∞, 0], [1, ∞) become parallel.
(c) The images of the two intervals (−∞, 0], [1, ∞] diverge in opposite directions.

𝑎1 𝑎2

Image when 𝛽1 + 𝛽2 = 1

𝑎1 𝑎2

Image when 0 < 𝛽1 + 𝛽2 < 1

(d) Let 𝑙𝑗 be the length of the side of the triangle opposite angle 𝛼𝑗𝜋. Then

𝑙3 = ∫
1

0
𝑥−𝛽1(1 − 𝑥)1−𝛽2𝑑𝑥 = 𝐵(1 − 𝛽1, 1 − 𝛽2) = 𝐵(𝛼1, 𝛼2)

= Γ(𝛼1)Γ(𝛼2)
Γ(𝛼1 + 𝛼2)

= Γ(𝛼1)Γ(𝛼2)
Γ(1 − 𝛼3)

= sin(𝛼3𝜋)
𝜋

Γ(𝛼1)Γ(𝛼2)Γ(𝛼3),

𝑙1 = ∫
∞

1
𝑥−𝛽1(𝑥 − 1)−𝛽2𝑑𝑥 = ∫

1

0
𝑡𝛽1+𝛽2−2(1 − 𝑡)−𝛽2𝑑𝑡 = 𝐵(𝛽1 + 𝛽2 − 1, 1 − 𝛽2)

= 𝐵(𝛼3, 𝛼2) = Γ(𝛼2)Γ(𝛼3)
Γ(𝛼2 + 𝛼3)

= Γ(𝛼2)Γ(𝛼3)
Γ(1 − 𝛼1)

= sin(𝛼1𝜋)
𝜋

Γ(𝛼1)Γ(𝛼2)Γ(𝛼3) (𝑡 = 1/𝑥),

𝑙2 = ∫
0

−∞
(−𝑥)−𝛽1(1 − 𝑥)−𝛽2𝑑𝑥 = ∫

1

0
𝑡𝛽1+𝛽2−2(1 − 𝑡)−𝛽1𝑑𝑡 = 𝐵(𝛽1 + 𝛽2 − 1, 1 − 𝛽1)

= 𝐵(𝛼3, 𝛼1) = Γ(𝛼3)Γ(𝛼1)
Γ(𝛼3 + 𝛼1)

= Γ(𝛼3)Γ(𝛼1)
Γ(1 − 𝛼2)

= sin(𝛼2𝜋)
𝜋

Γ(𝛼1)Γ(𝛼2)Γ(𝛼3) (𝑡 = − 1
𝑥 − 1

).

22. Let 𝔽(𝑧) = 𝑖−𝑧
𝑖+𝑧  and 𝔾(𝑤) = 𝑖1−𝑤

1+𝑤 , which are conformal map between ℍ and 𝔻. Then 𝐺 = 𝐹 ∘ 𝔽 is
conformal from ℍ to 𝑃 . We first suppose that 𝐹  did not map the point at 𝑧 = −1 to a vertex of 𝑃 . Then
by Theorem 4.6, we can represent 𝐺 as

𝐺(𝑧) = 𝑐1 ∫
𝑧

0

𝑑𝜁
(𝜁 − 𝐴1)

𝛽1 ⋯ (𝛽 − 𝐴𝑛)𝛽𝑛
+ 𝑐2.

Therefore change the variables 𝜉 = 𝔽(𝜁) to get

𝐹(𝑧) = 𝐺(𝔾(𝑧)) = 𝑐1 ∫
𝑖1−𝑧

1+𝑧

0

𝑑𝜁
(𝜁 − 𝐴1)

𝛽1 ⋯ (𝛽 − 𝐴𝑛)𝛽𝑛
+ 𝑐2

= 𝑐1 ∫
𝑧

1

−2𝑖 1
(1+𝜉)2 𝑑𝜉

(𝑖1−𝜉
1+𝜉 − 𝐴1)

𝛽1 ⋯ (𝑖1−𝜉
1+𝜉 − 𝐴𝑛)

𝛽𝑛
+ 𝑐2 = 𝑐′

1 ∫
𝑧

1

𝑑𝜉
(𝜉 − 𝐵1)

𝛽1 ⋯ (𝜉 − 𝐵𝑛)𝛽𝑛
+ 𝑐2,

where 𝐵𝑗 = 𝔽(𝐴𝑗).

If there is a vertex of 𝑃  such that corresponding to −1 ∈ 𝔻 with 𝐹 , then this point corresponds to ∞
for 𝐺. Hence by Theorem 4.7, we can represent 𝐺 as
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𝐺(𝑧) = 𝐶1 ∫
𝑧

0

𝑑𝜁
(𝜁 − 𝐴1)

𝛽1 ⋯ (𝛽 − 𝐴𝑛−1)
𝛽𝑛−1

+ 𝐶2.

Similar to above,

𝐹(𝑧) = 𝐺(𝔾(𝑧)) = 𝐶1 ∫
𝑖1−𝑧

1+𝑧

0

𝑑𝜁
(𝜁 − 𝐴1)

𝛽1 ⋯ (𝛽 − 𝐴𝑛−1)
𝛽𝑛−1

+ 𝐶2

= 𝐶′
1 ∫

𝑧

1

𝑑𝜁
(𝜉 − 𝐵1)

𝛽1 ⋯ (𝜉 − 𝐵𝑛)𝛽𝑛
+ 𝐶2

where 𝐵𝑗 = 𝔽(𝐴𝑗) and 𝐴𝑛 = ∞.

23. By Exercise 22, 𝐹  maps the unit disc conformally onto the interior of a polydon with 𝑛 sides. The side
lengths are

|∫
𝑒2𝜋(𝑘+1)𝑖/𝑛

𝑒2𝜋𝑘𝑖/𝑛

𝑑𝜁
(1 − 𝜁𝑛)2/𝑛 | = |∫

2𝜋(𝑘+1)/𝑛

2𝜋𝑘/𝑛

𝑖𝑒𝑖𝜃

(1 − 𝑒𝑖𝑛𝜃)2/𝑛 𝑑𝜃| = |∫
2𝜋/𝑛

0

𝑖𝑒𝑖(𝜑+2𝜋𝑘/𝑛)

(1 − 𝑒𝑖𝑛(𝜑+2𝜋𝑘/𝑛))2/𝑛 𝑑𝜑|

= |𝑖𝑒2𝜋𝑘𝑖/𝑛 ∫
2𝜋/𝑛

0

𝑒𝑖𝜑

(1 − 𝑒𝑖𝑛𝜑)2/𝑛 𝑑𝜑|,

respectively, and they are all the same. Therefore the image is regular polygon. The perimeter is

𝑛|∫
2𝜋/𝑛

0

𝑒𝑖𝜑

(1 − 𝑒𝑖𝑛𝜑)2/𝑛 𝑑𝜑| = 𝑛|∫
𝜋

0

𝑒2𝑖𝜃/𝑛

1 − 𝑒(2𝑖𝜃)2/𝑛

2
𝑛

𝑑𝜃| = 2
|
||
|
( 𝑖

2
)

2/𝑛
∫

𝜋

0

1

(𝑒𝑖𝜃−𝑒−𝑖𝜃

2𝑖 )
2/𝑛 𝑑𝜃

|
||
|

= 2𝑛−2
𝑛 ∫

𝜋

0
(sin 𝜃)−2/𝑛𝑑𝜃.

24. (a) We change variables 𝑥 = (1 − 𝑘̃2𝑦2)−1/2 in the integral defining 𝐾′(𝑘), then

𝐾′(𝑘) = ∫
1/𝑘

0

1
√(𝑥2 − 1)(1 − 𝑘2𝑥2)

𝑑𝑥 = ∫
1

0

1

√ 𝑘̃2𝑦2

1−𝑘̃2𝑦2 ⋅ 𝑘̃2 1−𝑦2

1−𝑘̃2𝑦2

𝑘̃2𝑦
√1 − 𝑘̃2𝑦2

3 𝑑𝑦

= ∫
1

0

1
√(1 − 𝑦2)(1 − 𝑘̃2𝑦2)

𝑑𝑦 = 𝐾(𝑘̃).

(b) Change variables 𝑥 = 2𝑡/(1 + 𝑘̃ + (1 − 𝑘̃)𝑡2), then

𝐾(𝑘) = ∫
1

0

1
√(1 − 𝑥2)(1 − 𝑘2𝑥2)

𝑑𝑥

= ∫
1

0

1
√(1−𝑡2)((1+𝑘̃)2−(1−𝑘̃)2𝑡2)

(1+𝑘̃)+(1−𝑘̃)𝑡2 ⋅ (1+𝑘̃)−(1−𝑘̃)𝑡2

(1+𝑘̃)+(1−𝑘̃)𝑡2

⋅
2((1 + 𝑘̃) − (1 − 𝑘̃)𝑡2)

((1 + 𝑘̃) + (1 − 𝑘̃)𝑡2)2 𝑑𝑡

= 2 ∫
1

0

𝑑𝑡

√(1 − 𝑡2)((1 + 𝑘̃)2 − (1 − 𝑘̃)2𝑡2)

= 2
1 + 𝑘̃

∫
1

0

𝑑𝑡

√(1 − 𝑡2)(1 − (1−𝑘̃
1+𝑘̃)

2
𝑡2)

= 2
1 + 𝑘̃

𝐾(1 − 𝑘̃
1 + 𝑘̃

).

(c) Using the integral representation for 𝐹  given in Exercise 9, Chapter 6,
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𝐾(𝑘) = ∫
1

0
(1 − 𝑥2)−1/2(1 − 𝑘2𝑥2)−1/2𝑑𝑥 = ∫

1

0
(1 − 𝑡)−1/2(1 − 𝑘2𝑡)−1/2 𝑑𝑡

2
√

𝑡

= 1
2

∫
1

0
𝑡−1/2(1 − 𝑡)−1/2(1 − 𝑘2𝑡)−1/2𝑑𝑡 = 1

2
( Γ(1)

Γ(1/2)Γ(1 − 1/2)
)

−1

𝐹(1/2, 1/2, 1; 𝑘2)

= 𝜋
2
𝐹(1/2, 1/2, 1; 𝑘2).

Chapter 9. An Introduction to Elliptic Functions

1. (a) First suppose that 𝑓  is periodic with the simple period 𝑤0 = 1
𝑞𝑤1. Since 𝑤1 = 𝑞𝑤0 and 𝑤2 = 𝑝

𝑞𝑤1 =
𝑝𝑤0 where 𝑝, 𝑞 are integers, 𝑓  has two periods 𝑤1 and 𝑤2.

Now suppose 𝑓  has two periods 𝑤1 and 𝑤2 where 𝑤2/𝑤1 = 𝑝/𝑞. Then there exists integers 𝑚 and
𝑛 such that 𝑚𝑞 + 𝑛𝑝 = 1. Hence

𝑓(𝑧 + 𝑤0) = 𝑓(𝑧 + (𝑚𝑞 + 𝑛𝑝)𝑤0) = 𝑓(𝑧 + 𝑚𝑤1 + 𝑛𝑤2) = 𝑓(𝑧),

which means that 𝑓  is periodic with simple period 𝑤0 = 1
𝑞𝑤1.

(b) Let 𝜏 = 𝑤2/𝑤1. Note that {𝑚 − 𝑛𝜏}𝑚,𝑛∈ℤ is dense in ℝ since 𝜏  is irrational. Hence

{𝑧 ∈ ℂ : 𝑓(𝑧) = 𝑓(0)}

has subsequence of distinct points with limit point 0. By Corollary 4.9, Chapter 2, 𝑓(𝑧) = 0 for all
𝑧 ∈ ℂ.

2. Suppose that the boundary of the parallelogram contains no zeros or poles. Using the periodicity of 𝑓 ,

∫
𝜕𝑃0

𝑧𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 = ∫
𝑤1

0

𝑧𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 + ∫
𝑤1+𝑤2

𝑤1

𝑧𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 + ∫
𝑤2

𝑤1+𝑤2

𝑧𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 + ∫
0

𝑤2

𝑧𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧

= ∫
𝑤1

0

𝑧𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 + ∫
𝑤2

0

(𝑧 + 𝑤1)𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 + ∫
0

𝑤1

(𝑧 + 𝑤2)𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 + ∫
0

𝑤2

𝑧𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧

= 𝑤1 ∫
𝑤2

0

𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 − 𝑤2 ∫
𝑤1

0

𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧.

Observe that if 𝑓  has zero of order 𝑛 at 𝑧0, then

𝑓 ′(𝑧)
𝑓(𝑧)

= 𝑛
𝑧 − 𝑧0

+ 𝐺(𝑧) ⇒  𝑧𝑓
′(𝑧)

𝑓(𝑧)
= 𝑛𝑧

𝑧 − 𝑧0
+ 𝑧𝐺(𝑧),

otherwise 𝑓  has pole of order 𝑛 at 𝑧0, then

𝑓 ′(𝑧)
𝑓(𝑧)

= − 𝑛
𝑧 − 𝑧0

+ 𝐻(𝑧) ⇒  𝑧𝑓
′(𝑧)

𝑓(𝑧)
= − 𝑛𝑧

𝑧 − 𝑧0
+ 𝑧𝐻(𝑧).

Therefore

∫
𝜕𝑃0

𝑧𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 = 2𝜋𝑖(∑
𝑟

𝑗=0
𝑎𝑗 − ∑

𝑟

𝑗=0
𝑏𝑗).

Meanwhile, the integral of 𝑓 ′(𝑧)/𝑓(𝑧) over a side is an integer multiple of 2𝜋. To see this, write 𝑓(𝑧) =
𝑟(𝑧)𝑒𝑖𝜃(𝑧) for 𝑟(𝑧) > 0 and continuous 𝜃(𝑧). Then
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∫
𝑤

0

𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 = ∫
𝑤

0

𝑟′𝑒𝑖𝜃 + 𝑖𝑟𝑒𝑖𝜃

𝑟𝑒𝑖𝜃 𝑑𝑧 = ∫
𝑤

0
(𝑟′

𝑟
+ 𝑖𝜃′)𝑑𝑧 = [log 𝑟(𝑧)]𝑤0 + 𝑖[𝜃]𝑤0 = 𝑖(𝜃(𝑤) − 𝜃(0)),

where 𝑓(0) = 𝑓(𝑤) implies 𝑒𝑖(𝜃(𝑤)−𝜃(0)) = 1 and 𝑖(𝜃(𝑤) − 𝜃(0)) = 2𝜋𝑖 ⋅ 𝑚 for 𝑚 ∈ ℤ. Therefore

2𝜋𝑖(∑
𝑟

𝑗=0
𝑎𝑗 − ∑

𝑟

𝑗=0
𝑏𝑗) = ∫

𝜕𝑃0

𝑧𝑓 ′(𝑧)
𝑓(𝑧)

𝑑𝑧 = 2𝜋𝑖(𝑛𝑤1 + 𝑚𝑤2), where 𝑛, 𝑚 ∈ ℤ.

If there are zeros or poles on the side of the parallelogram, we can translate it by a small amount to
reduce the problem to the first case.

3. Since |𝑛 + 𝑚𝜏|2 ≈ (|𝑛| + |𝑚|)2 ≈ 𝑛2 + 𝑚2, it’s enough to prove ∑ 1/(𝑛2 + 𝑚2) = ∞. Note that

∑
1≤𝑛2+𝑚2≤𝑅2

1
𝑛2 + 𝑚2 = 4 ∑

1≤𝑛≤𝑅

1
𝑛2 + 4 ∑

𝑛2+𝑚2≤𝑅2

1≤𝑛,𝑚

1
𝑛2 + 𝑚2 .

First term is obviously 𝑂(1). Moreover,

∑
𝑛2+𝑚2≤𝑅2

1≤𝑛,𝑚

1
𝑛2 + 𝑚2 ≤ ∫

𝜋/2

0
∫

𝑅

0

1
𝑟2 𝑟 𝑑𝑟𝑑𝜃 = 𝜋

2
log 𝑅,

∑
𝑛2+𝑚2≤𝑅2

1≤𝑛,𝑚

1
𝑛2 + 𝑚2 ≥ ∫

𝜋/2

0
∫

𝑅

0

1
(𝑟 cos 𝜃 − 1)2 + (𝑟 sin 𝜃 − 1)2 𝑟 𝑑𝑟𝑑𝜃

≥ ∫
𝜋/2

0
∫

𝑅

0

1
𝑟2 + 2

𝑟 𝑑𝑟𝑑𝜃

= 𝜋
2

log √𝑅2 + 2 − 𝜋
4

log 2 ≥ 𝜋
2

log 𝑅 + 𝑂(1).

Hence

∑
1≤𝑛2+𝑚2≤𝑅2

1/(𝑛2 + 𝑚2) = 2𝜋 log 𝑅 + 𝑂(1) as 𝑅 → ∞

and the given series does not converge.

4. For 𝑅 sufficiently large,

℘(𝑧) − ℘𝑅(𝑧) = ∑
|𝑤|≥𝑅

[ 1
(𝑧 + 𝑤)2 − 1

𝑤2 ] = ∑
|𝑤|≥𝑅

𝑂( 1
|𝑤|3

) = 𝑂(∫
∞

𝑅

1
𝑟3 𝑟𝑑𝑟) = 𝑂( 1

𝑅
).

Hence ℘(𝑧) = ℘𝑅(𝑧) + 𝑂(1/𝑅). Next,

℘𝑅(𝑧 + 1) − ℘𝑅(𝑧) = 1
(𝑧 + 1)2 + ∑

0<|𝑤|<𝑅
[ 1
(𝑧 + 1 + 𝑤)2 − 1

𝑤2 ] − 1
𝑧2 − ∑

0<|𝑤|<𝑅
[ 1
(𝑧 + 𝑤)2 − 1

𝑤2 ]

= ∑
0≤|𝑤−1|≤𝑅

1
(𝑧 + 𝑤)2 − ∑

0≤|𝑤|≤𝑅

1
(𝑧 + 𝑤)2 = 𝑂

(
(( ∑

𝑅−1≤|𝑤|≤𝑅+1

1
|𝑤|2 )

))

= 𝑂(𝑅 ⋅ 1
𝑅2 ) = 𝑂( 1

𝑅
).

Similarly, ℘𝑅(𝑧 + 𝜏) = ℘𝑅(𝑧) + 𝑂(1/𝑅). Therefore for any 𝑤 ∈ Λ,

℘(𝑧 + 𝑤) = ℘(𝑧) + 𝑂(1/𝑅).
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Taking the limit 𝑅 → ∞ gives ℘(𝑧 + 𝑤) = ℘(𝑧).

5. (a) First prove that 𝜎(𝑧) is the entire function of order 2. That is, we will show that

|∏
∞

𝑗=1
𝐸2(𝑧/𝜏𝑗)| ≤ 𝑒𝑐|𝑧|𝑠

for any 𝑠 with 2 < 𝑠 < 3. This proof is similar to the proof of Lemma 5.3, Chapter 5. We write

∏
∞

𝑗=1
𝐸2(𝑧/𝜏𝑗) = ∏

|𝜏𝑗|≤2|𝑧|

𝐸2(𝑧/𝜏𝑗) ∏
|𝜏𝑗|>2|𝑧|

𝐸2(𝑧/𝜏𝑗).

For the second product,

| ∏
|𝜏𝑗|>2|𝑧|

𝐸2(𝑧/𝜏𝑗)| = ∏
|𝜏𝑗|>2|𝑧|

|𝐸2(𝑧/𝜏𝑗)| ≤ ∏
|𝜏𝑗|>2|𝑧|

𝑒𝑐|𝑧/𝜏𝑗|3 = 𝑒
𝑐|𝑧|3 ∑|𝜏𝑗|>2|𝑧| |𝜏𝑗|−3

.

But |𝜏𝑗| > 2|𝑧| and 𝑠 < 3, so we have

|𝜏𝑗|
−3 = |𝜏𝑗|

−𝑠|𝜏𝑗|
𝑠−3 ≤ 𝐶|𝜏𝑗|

−𝑠|𝑧|𝑠−3.

Therefore, the fact that ∑ |𝜏𝑛|−𝑠 converges implies that

| ∏
|𝜏𝑗|>2|𝑧|

𝐸2(𝑧/𝜏𝑗)| ≤ 𝑒𝑐|𝑧|𝑠 .

Now estimate the first product.

| ∏
|𝜏𝑗|≤2|𝑧|

𝐸2(𝑧/𝜏𝑗)| = ∏
|𝜏𝑗|≤2|𝑧|

|1 − 𝑧
𝜏𝑗

| ∏
|𝜏𝑗|≤2|𝑧|

𝑒𝑐|𝑧/𝜏𝑗|2 .

Since |𝜏𝑗|
−2 = |𝜏𝑗|

−𝑠|𝜏𝑗|
𝑠−2 ≤ 𝐶|𝜏𝑗|

−𝑠|𝑧|𝑠−2, therefore

∏
|𝜏𝑗|≤2|𝑧|

𝑒𝑐|𝑧/𝜏𝑗|2 = 𝑒
𝑐|𝑧|2 ∑|𝜏𝑗|≤2|𝑧| |𝜏𝑗|−2

≤ 𝑒𝑐|𝑧|𝑠 .

Moreover, Letting 𝜏 ′ = min{1, |𝜏 |} gives

∏
|𝜏𝑗|≤2|𝑧|

|1 − 𝑧
𝜏𝑗

| ≤ ∏
|𝜏𝑗|≤2|𝑧|

(1 + | 𝑧
𝜏𝑗

|) ≤ (1 + |𝑧|
𝜏 ′ )

𝔫(2|𝑧|)

= 𝑒𝔫(2|𝑧|) log(1+|𝑧|/𝜏′) ≤ 𝑒𝑐|𝑧|𝜌 log(1+|𝑧|/𝜏′) ≤ 𝑒𝑐|𝑧|𝑠 ,

where 2 < 𝜌 < 𝑠. Hence 𝜎(𝑧) is entire function of order 2. By Hadamard’s factorization theorem,
any function 𝑓  of order 2 and has simples zeros at {𝑛 + 𝑚𝜏} is equal to 𝑒𝑃(𝑧)𝜎(𝑧), where 𝑃(𝑧)
is polynomial of degree ≤ 2. Therefore 𝜎(𝑧) also have simple zeros at all the periods 𝑛 + 𝑚𝜏 , and
vanishes nowhere else.

(b) By Lemma 4.2, Chapter 5,

𝜎′(𝑧)
𝜎(𝑧)

= 1
𝑧

+ ∑
(𝑛,𝑚)≠(0,0)

1
𝜏𝑗

𝐸′
2(𝑧/𝜏𝑗)

𝐸2(𝑧/𝜏𝑗)
= 1

𝑧
+ ∑

(𝑛,𝑚)≠(0,0)
[ 1

𝑧 − 𝜏𝑗
+ 1

𝜏𝑗
+ 𝑧

𝜏2
𝑗
]

= 1
𝑧

+ ∑
(𝑛,𝑚)≠(0,0)

[ 1
𝑧 − 𝑛 − 𝑚𝜏

+ 1
𝑛 + 𝑚𝜏

+ 𝑧
(𝑛 + 𝑚𝜏)2 ].
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(c) Also by Lemma 4.2, Chapter 5,

𝐿′(𝑧) = −(𝜎′(𝑧)
𝜎(𝑧)

)
′

= (𝜎′(𝑧))2 − 𝜎(𝑧)𝜎″(𝑧)
(𝜎(𝑧))2

= 1
𝑧2 + ∑

(𝑛,𝑚)≠(0,0)
[ 1
(𝑧 − 𝑛 − 𝑚𝜏)2 − 1

(𝑛 + 𝑚𝜏)2 ] = 1
𝑧2 + ∑

𝜔∈Λ∗

[ 1
(𝑧 + 𝜔)2 − 1

𝜔2 ] = ℘(𝑧).

6. Recall that (℘′)2 = 4℘3 − 𝑔2℘ − 𝑔3, where 𝑔2 = 60𝐸4 and 𝑔3 = 140𝐸6. Differentiate both sides then

2℘′℘″ = 12℘2℘′ − 𝑔2℘′ ⇒  ℘″ = 6℘2 − 𝑔2/2.

Hence ℘″ is a quadratic polynomial in ℘.

7. Setting 𝜏 = 1/2 in the expression

∑
∞

𝑚=−∞

1
(𝑚 + 𝜏)2 = 𝜋2

sin2(𝜋𝜏)

gives

∑
𝑚∈ℤ

1
(𝑚 + 1/2)2 = 𝜋2 ⇒  ∑

𝑚∈ℤ

1
(2𝑚 + 1)2 = 𝜋2

4
⇒ ∑

𝑚≥1,𝑚 odd

1
𝑚2 = 𝜋2

8
.

Since

∑
𝑚≥1,𝑚 odd

1
𝑚

= ∑
𝑚≥1

1
𝑚2 − ∑

𝑚≥1

1
(2𝑚)2 = 3

4
∑
𝑚≥1

1
𝑚2 ,

deduce that

∑
𝑚≥1

1
𝑚2 = 4

3
⋅ 𝜋2

8
= 𝜋2

6
= 𝜁(2).

Moreover, differentiating both sides of expression above twice then

6 ∑
∞

𝑚=−∞

1
(𝑚 + 𝜏)4 = 2𝜋4 csc2(𝜋𝜏)(1 + 3 tan2(𝜋𝜏)).

Set 𝜏 = 1/2 to get

∑
𝑚∈ℤ

1
(𝑚 + 1/2)4 = 𝜋4

3
 ⇒  ∑

𝑚∈ℤ

1
(2𝑚 + 1)4 = 𝜋4

48
 ⇒  ∑

𝑚≥1,𝑚 odd

1
𝑚4 = 𝜋4

96

and

∑
𝑚≥1

1
𝑚4 = 16

15
⋅ 𝜋4

96
= 𝜋4

90
= 𝜁(4).

8. (a) Putting 𝑘 = 4 to Theorem 2.5,

𝐸4(𝜏) = 2𝜁(4) + 2(2𝜋)4

6
∑
∞

𝑟=1
𝜎3(𝑟)𝑒2𝜋𝑖𝜏𝑟

where 2𝜁(4) = 𝜋4/45. Let 𝜏 = 𝑥 + 𝑖𝑡, then
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|∑
∞

𝑟=1
𝜎3(𝑟)𝑒2𝜋𝑖𝜏𝑟| ≤ ∑

∞

𝑟=1
𝑟4𝑒−2𝜋𝑟𝑡 ≤ ∑

∞

𝑟=1
𝑒4

3𝜋𝑟𝑒−2𝜋𝑟𝑡 = 𝑒𝜋(4/3−2𝑡)

1 − 𝑒𝜋(4/3−2𝑡) → 0

as 𝑡 → ∞. We used the identity

𝑟 ≤ 𝜋
3
𝑟 ≤ 𝜋

3
𝑟 + 1 ≤ 𝑒𝜋

3 𝑟, 𝑟 > 0.

(b) By (a),

|𝐸4(𝜏) − 𝜋4

45
| = 16

3
𝜋4|∑

∞

𝑟=1
𝜎3(𝑟)𝑒2𝜋𝑖𝜏𝑟| ≤ 16

3
𝜋4 𝑒4𝜋/3

1 − 𝑒−𝜋(2𝑡−4/3) 𝑒
−2𝜋𝑡

≤ 16
3

𝜋4 𝑒4𝜋/3

1 − 𝑒−2𝜋/3 𝑒−2𝜋𝑡 = 𝑐𝑒−2𝜋𝑡,

whenever 𝑡 ≥ 1.
(c) Since 𝐸𝑘(𝜏) = 𝜏−𝑘𝐸𝑘(−1/𝜏) (Theorem 2.1) and Im(−1/𝜏) = 1/𝑡 ≥ 1,

|𝐸4(𝜏) − 𝜏−4 𝜋4

45
| = |𝜏−4𝐸4(−1/𝜏) − 𝜏−4 𝜋4

45
| = 𝑡−4|𝐸4(−1/𝜏) − 𝜋4

45
| ≤ 𝑡−4𝑐𝑒−2𝜋/𝑡.

The last inequality is held by (b).

Chapter 10. Applications of Theta Functions

1. Observe that 𝐹(𝑧) = ((Θ′)2 − ΘΘ″)/Θ2 and ℘𝜏(𝑧 − 1/2 − 𝜏/2) have same property; they are both
elliptic function of order 2 with periods 1 and 𝜏 , and with a double pole at 𝑧 = 1/2 + 𝜏/2 + 𝑛 + 𝑚𝜏 .
Moreover, the principal part of two functions are same as 1/(𝑧 − 𝑧0)

2 at each pole 𝑧0 = 1/2 + 𝜏/2 +
𝑛 + 𝑚𝜏 . By Liouville’s theorem, 𝐹(𝑧) − ℘𝜏(𝑧 − 1/2 − 𝜏/2) is constant, thus

𝐹(𝑧) = ℘𝜏(𝑧 − 1/2 − 𝜏/2) + 𝑐𝜏 .

Now we calculate 𝑐𝜏 . Note that

℘(𝑧 − 𝑧0) = 1
(𝑧 − 𝑧0)

2 + 0 + 3𝐸4(𝑧 − 𝑧0)
2 + ⋯.

Since Θ(𝑧|𝜏) = Θ′(𝑧0|𝜏)(𝑧 − 𝑧0) + 1
2Θ″(𝑧0|𝜏)(𝑧 − 𝑧0)

2 + 1
6Θ‴(𝑧0|𝜏)(𝑧 − 𝑧0)

3 + ⋯, we get

Θ′(𝑧|𝜏)
Θ(𝑧|𝜏)

= 1
𝑧 − 𝑧0

Θ′
0 + Θ″

0 (𝑧 − 𝑧0) + 1
2Θ‴

0 (𝑧 − 𝑧0)
2 + ⋯

Θ′
0 + 1

2Θ″
0 (𝑧 − 𝑧0) + 1

6Θ‴
0 (𝑧 − 𝑧0)

2 + ⋯

= 1
𝑧 − 𝑧0

(1 + Θ″
0

2Θ′
0
(𝑧 − 𝑧0) + (1

3
Θ‴

0
Θ′

0
− 1

4
(Θ″

0
Θ′

0
)

2

)(𝑧 − 𝑧0)
2 + ⋯),

where Θ(𝑘)
0 = Θ(𝑘)(𝑧0|𝜏). Hence

𝐹(𝑧) = −(Θ′(𝑧|𝜏)
Θ(𝑧|𝜏)

)
′

= 1
(𝑧 − 𝑧0)

2 − (1
3

Θ‴
0

Θ′
0

− 1
4
(Θ″

0
Θ′

0
)

2

) + ⋯

and

𝑐𝜏 = −1
3

Θ‴
0

Θ′
0

+ 1
4
(Θ″

0
Θ′

0
)

2

.

Note. It is unclear whether 𝑐𝜏  can be expressed in terms of the first two derivatives of Θ(𝑧|𝜏).
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2. (a) Since 𝐹𝑛 ≤ 2𝑛 for all 𝑛 ≥ 0, 𝐹(𝑥) converges absolutely near 0. Observe that

𝐹(𝑥) − 𝑥2𝐹(𝑥) − 𝑥𝐹(𝑥) − 𝑥

= (𝐹0 + 𝐹1𝑥) − (𝐹0𝑥) − 𝑥 + ∑
∞

𝑛=2
(𝐹𝑛 − 𝐹𝑛−1 − 𝐹𝑛−2)𝑥𝑛 = 0.

Hence 𝐹(𝑥) = 𝑥2𝐹(𝑥) + 𝑥𝐹(𝑥) + 𝑥 for all 𝑥 in a neighborhood of 0.
(b) 𝑞(𝑥) = 1 − 𝑥 − 𝑥2 = (1 − 𝛼𝑥)(1 − 𝛽𝑥) where 𝛼, 𝛽 = (1 ±

√
5)/2.

(c) By simple calculation,

𝐹(𝑥) = 𝑥
(1 − 𝛼𝑥)(1 − 𝛽𝑥)

= 1
𝛼 − 𝛽

1
1 − 𝛼𝑥

+ 1
𝛽 − 𝛼

1
1 − 𝛽𝑥

.

(d) In the neighborhood of 0,

∑
∞

𝑛=0
𝐹𝑛𝑥𝑛 = 𝐹(𝑥) = 𝐴

1 − 𝛼𝑥
+ 𝐵

1 − 𝛽𝑥
= ∑

∞

𝑛=0
(𝐴𝛼𝑛 + 𝐵𝛽𝑛)𝑥𝑛.

Hence 𝐹𝑛 = 𝐴𝛼𝑛 + 𝐵𝛽𝑛 for all 𝑛 ≥ 0.

3. We will briefly touch on the solution for the case where 𝛼 = 𝛽. If so,

𝑈(𝑥) = 𝑢0 + (𝑢1 − 𝑎𝑢0)𝑥
(1 − 𝛼𝑥)2 = 𝐴

1 − 𝛼𝑥
+ 𝐵𝛼

(1 − 𝛼𝑥)2 = 𝐴 ∑
∞

𝑛=0
𝛼𝑛𝑥𝑛 + 𝐵 ∑

∞

𝑛=0
(𝑛 + 1)𝛼𝑛+1𝑥𝑛.

Therefore

𝑢𝑛 = 𝐴𝛼𝑛 + 𝐵(𝑛 + 1)𝛼𝑛+1 = 𝐴′𝛼𝑛 + 𝐵′𝑛𝛼𝑛

for all 𝑛 ≥ 0.

4. Note that

𝑝(𝑛) = ∑
0<𝑘(3𝑘+1)/2≤𝑛

(−1)𝑘+1𝑝(𝑛 − 𝑘(3𝑘 + 1)
2

)

⇔ 0 = ∑
0≤𝑘(3𝑘+1)/2≤𝑛

(−1)𝑘+1𝑝(𝑛 − 𝑘(3𝑘 + 1)
2

).

Since

∑
∞

𝑛=0
𝑝(𝑛)𝑧𝑛 = ∏

∞

𝑘=1

1
1 − 𝑥𝑘 , ∏

∞

𝑛=1
(1 − 𝑥𝑛) = ∑

∞

𝑘=−∞
(−1)𝑘𝑥

𝑘(3𝑘+1)
2 ,

we have

1 = (∏
∞

𝑗=1

1
1 − 𝑥𝑗 )(∏

∞

𝑛=1
(1 − 𝑥𝑛)) = ∑

∞

𝑘=−∞
(−1)𝑘(∏

∞

𝑗=1

1
1 − 𝑥𝑗 )𝑥

𝑘(3𝑘+1)
2

= ∑
∞

𝑘=−∞
(−1)𝑘

(
(( ∑

∞

𝑛=𝑘(3𝑘+1)/2
𝑝(𝑛 − 𝑘(3𝑘 + 1)

2
)𝑥𝑛−𝑘(3𝑘+1)

2

)
))𝑥

𝑘(3𝑘+1)
2

= ∑
∞

𝑛=0(
(( ∑

0≤𝑘(3𝑘+1)/2≤𝑛
(−1)𝑘𝑝(𝑛 − 𝑘(3𝑘 + 1)

2
)

)
))𝑥𝑛,

whenever |𝑥| < 1. Therefore
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∑
0≤𝑘(3𝑘+1)/2≤𝑛

(−1)𝑘𝑝(𝑛 − 𝑘(3𝑘 + 1)
2

) = 0

for all 𝑛 ≥ 1.

5. Observe that

log 𝐹(𝑥) = ∑
∞

𝑛=1
log( 1

1 − 𝑥𝑛 ) = ∑
∞

𝑛=1
∑
∞

𝑚=1

1
𝑚

𝑥𝑛𝑚 = ∑
∞

𝑚=1

1
𝑚

𝑥𝑚

1 − 𝑥𝑚 .

Since 𝑚𝑥𝑚−1(1 − 𝑥) < 1 − 𝑥𝑚 < 𝑚(1 − 𝑥) for 0 < 𝑥 < 1,

1
1 − 𝑥

∑
∞

𝑚=1

𝑥𝑚

𝑚2 ≤ log 𝐹(𝑥) ≤ 𝜋2

6
𝑥

1 − 𝑥
.

Applying Abel’s theorem,

lim
𝑥→1

0<𝑥<1

∑
∞

𝑚=1

1
𝑚2 𝑥𝑚 = ∑

∞

𝑚=1

1
𝑚2 = 𝜋2

6
.

So by the sandwich theorem

lim
𝑥→1

0<𝑥<1

log 𝐹(𝑥)
𝜋2/(6(1 − 𝑥))

= 1.

6. Since log 𝐹(𝑥) ∼ 𝑐/(1 − 𝑥) as 𝑥 → 1, we have log 𝐹(𝑒−𝑦) ∼ 𝑐/(1 − 𝑒−𝑦) as 𝑦 → 0. Also, 𝑐𝑦/(1 − 𝑒−𝑦)
is bounded near 𝑦 = 0, so we know

𝑐𝑦
1 − 𝑒−𝑦 ≤ 𝐴 ⇒  𝑐

1 − 𝑒−𝑦 ≤ 𝐴
𝑦

.

Hence We get 𝐹(𝑒−𝑦) = ∑ 𝑝(𝑛)𝑒−𝑛𝑦 ≤ 𝐶𝑒𝑐/𝑦, and 𝑝(𝑛)𝑒−𝑛𝑦 ≤ 𝑐𝑒𝑐/𝑦. Take 𝑦 = 1/𝑛1/2 to get 𝑝(𝑛) ≤
𝑐′𝑒𝑐′𝑛1/2 . In the opposite direction, first see that 𝑐𝑦/(1 − 𝑒−𝑦) ≥ 𝐴′ > 0 near 𝑦 = 0, so

𝑐𝑦
1 − 𝑒−𝑦 ≥ 𝐴′ ⇒  𝑐

1 − 𝑒−𝑦 ≥ 𝐴′

𝑦
.

This leads to inequality

𝐶𝑒𝑐/𝑦 ≤ 𝐹(𝑒−𝑦) = ∑
∞

𝑛=0
𝑝(𝑛)𝑒−𝑛𝑦 ≤ ∑

𝑚

𝑛=0
𝑝(𝑛)𝑒−𝑛𝑦 + 𝐶 ∑

∞

𝑛=𝑚+1
𝑒𝑐𝑛1/2𝑒−𝑛𝑦.

Take 𝑦 = 𝐴𝑚−1/2 where 𝐴 is a large constant. we have 𝑐𝑛1/2 − 𝐴𝑚−1/2𝑛 ≤ −1
2𝐴𝑚−1/2𝑛 for 𝑛 ≥ 𝑚 +

1, thus

∑
∞

𝑛=𝑚+1
𝑒𝑐𝑛1/2𝑒−𝐴𝑚−1/2𝑛 ≤ ∑

∞

𝑛=𝑚+1
𝑒−1

2𝐴𝑚−1/2𝑛 = 𝑒−1
2𝐴𝑚−1/2(𝑚+1)

1 − 𝑒−1
2𝐴𝑚−1/2 = 𝑂(1).

Moreover, the sequence 𝑝(𝑚) is increasing,

∑
𝑚

𝑛=0
𝑝(𝑛)𝑒−𝑛𝑦 ≤ 𝑝(𝑚) ∑

𝑚

𝑛=0
𝑒−𝑛𝑦 ≤ 𝑝(𝑚)𝐴

′

𝑦
= 𝐴′

𝐴
√

𝑚𝑝(𝑚).

Summarizing all the inequalities so far, we finally have

𝑝(𝑚) ≥ 𝐾√
𝑚

𝑒 𝑐
𝐴

√
𝑚 + 𝑂(1) ≥ 𝑒𝑐1𝑚1/2 .
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7. (a) Let 𝑥 = 𝑒2𝜋𝑖𝑢, 𝑞 = 𝑒𝜋𝑖𝑢, 𝑧 = 𝑢/2. Then

∏
∞

𝑛=0
(1 + 𝑥𝑛)(1 − 𝑥2𝑛+2) = ∏

∞

𝑛=1
(1 − 𝑥𝑛)(1 + 𝑥𝑛)(1 + 𝑥𝑛−1)

= ∏
∞

𝑛=1
(1 − 𝑞2𝑛)(1 + 𝑞2𝑛−1𝑒2𝜋𝑖𝑧)(1 + 𝑞2𝑛−1𝑒−2𝜋𝑖𝑧).

By Theorem 1.3 the product equals

∑
∞

𝑛=−∞
𝑒𝜋𝑖𝑛2𝑢𝑒2𝜋𝑖𝑛(𝑢/2) = ∑

∞

𝑛=−∞
(𝑒2𝜋𝑖𝑢)𝑛(𝑛+1)/2 = ∑

∞

𝑛=−∞
𝑥𝑛(𝑛+1)/2.

(b) Let 𝑥 = 𝑒2𝜋𝑖𝑢, 𝑞 = 𝑒5𝜋𝑖𝑢, 𝑧 = 1/2 + 3𝑢/2. Then

∏
∞

𝑛=0
(1 − 𝑥5𝑛+1)(1 − 𝑥5𝑛+4)(1 − 𝑥5𝑛+5) = ∏

∞

𝑛=1
(1 − 𝑥5𝑛)(1 − 𝑥5𝑛−4)(1 − 𝑥5𝑛−1)

= ∏
∞

𝑛=1
(1 − 𝑞2𝑛)(1 + 𝑞2𝑛−1𝑒2𝜋𝑖𝑧)(1 + 𝑞2𝑛−1𝑒−2𝜋𝑖𝑧).

By Theorem 1.3 the product equals

∑
∞

𝑛=−∞
𝑒𝜋𝑖𝑛25𝑢𝑒2𝜋𝑖𝑛(1/2+3𝑢/2) = ∑

∞

𝑛=−∞
(−1)𝑛(𝑒2𝜋𝑖𝑢)𝑛(5𝑛+3)/2 = ∑

∞

𝑛=−∞
(−1)𝑛𝑥𝑛(5𝑛+3)/2.

8. (a) If both 𝑎 and 𝑏 are even, then it is contradiction with the fact that 𝑎 and 𝑏 have no common factors.
If both 𝑎 and 𝑏 are odd, then 𝑐2 ≡ 2 (mod 4), which is impossible.

(b) Assume 𝑎 is odd and 𝑏 even, and write 𝑏2 = 𝑐2 − 𝑎2. Then 𝑐 − 𝑎 and 𝑐 + 𝑎 are both even, so

(𝑏
2
)

2

= (𝑐 − 𝑎
2

)(𝑐 + 𝑎
2

).

Note that (𝑐 − 𝑎)/2 and (𝑐 + 𝑎)/2 are coprime. Otherwise, 𝑔 > 1 divides (𝑐 − 𝑎)/2 and (𝑐 + 𝑎)/2,
then 𝑔 divides 𝑐 = 𝑐+𝑎

2 + 𝑐−𝑎
2  and 𝑎 = 𝑐+𝑎

2 − 𝑐−𝑎
2 , which is contradiction. Therefore there exists

integer 𝑛, 𝑚 such that (𝑐 − 𝑎)/2 = 𝑛2, (𝑐 + 𝑎)/2 = 𝑚2. then

𝑎 = 𝑚2 − 𝑛2, 𝑏 = 2𝑚𝑛, 𝑐 = 𝑚2 + 𝑛2.

(c) If 𝑐 = 𝑚2 + 𝑛2 for some integers 𝑚, 𝑛, then letting 𝑎 = 𝑚2 − 𝑛2 and 𝑏 = 2𝑚𝑛 to get 𝑎2 + 𝑏2 = 𝑐2.

9. (a) Since 𝑑1(𝑝) = 2 and 𝑑3(𝑝) = 0, 𝑟2(𝑝) = 4(2 − 0) = 8.
(b) 𝑞𝑎 has 𝑎 + 1 divisors, which are 1, 𝑞, 𝑞2, ⋯, 𝑞𝑎, and the remainders modulo 4 is 1, 3, 1, 3, ⋯. Hence

𝑟2(𝑞𝑎) = 4((𝑎
2

+ 1) − 𝑎
2
) > 0,  when 𝑎 is even, and

𝑟2(𝑞𝑎) = 4(𝑎 + 1
2

− 𝑎 + 1
2

) = 0, when 𝑎 is odd.

(c) Note that if 𝑞 is prime of the form 4𝑘 + 3 and 𝑞 ∣ 𝑎2 + 𝑏2 then 𝑞 ∣ 𝑎 and 𝑞 ∣ 𝑏. Otherwise, if 𝑞 ∤ 𝑎,
then 1 + (𝑎−1𝑏)2 ≡ 0 (mod 𝑞) and 1 = (−1

𝑞 ) = (−1)𝑞−1
2 = −1, which is contradiction.

Suppose 𝑛 can be represented as the sum of two squares, 𝑛 = 𝑎2 + 𝑏2. If there is prime 𝑞 ∣ 𝑛 of
the form 4𝑘 + 3, then 𝑞 ∣ 𝑎, 𝑏 implies that 𝑞2 ∣ 𝑎2 + 𝑏2 = 𝑛. Therefore (𝑛/𝑞)2 = (𝑎/𝑞)2 + (𝑏/𝑞)2.
Repeating this process, we can see that every prime 𝑞 = 4𝑘 + 3 occur with even exponents.

Now suppose all the primes of the form 4𝑘 + 3 that arise in the prime decomposition of 𝑛 occur with
even exponents. Observe that
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2 = 12 + 12,

𝑝 = 𝑎2 + 𝑏2, where 𝑝 is prime of the form 4𝑘 + 1 (by (a)),

𝑝2 = 𝑝2 + 02, where 𝑝 is prime of the form 4𝑘 + 3.

Since 𝑛 is product of numbers above, and (𝑎2 + 𝑏2)(𝑐2 + 𝑑2) = (𝑎𝑐 − 𝑏𝑑)2 + (𝑎𝑑 + 𝑏𝑐)2, 𝑛 is also
sum of two squares.

10. (a) If 𝑞 is prime of the form 4𝑘 + 3 and 𝑎 is odd, then 𝑟2(𝑞𝑎) = 0. Meanwhile, 𝑛 = 5𝑘 then 𝑟2(𝑛) =
4(𝑑1(5𝑘) − 𝑑3(5𝑘)) = 4(𝑘 + 1 − 0) = 4𝑘 + 4, hence lim sup𝑛→∞ 𝑟2(𝑛) = ∞.

(b) If 𝑛 = 2𝑘, then 𝑟4(𝑛) = 8𝜎∗(𝑛) = 8(1 + 2) = 24. Now define 𝑛𝑘 = (𝑝1𝑝2 ⋯ 𝑝𝑘)𝑘, where 𝑝𝑗 denotes
𝑗-th prime. Then

𝜎∗(𝑛𝑘)
𝑛𝑘

= 𝜎(𝑛𝑘)
𝑛𝑘

= (1 + 1
𝑝1

+ ⋯ + 1
𝑝𝑘

1
) ⋯ (1 + 1

𝑝𝑘
+ ⋯ + 1

𝑝𝑘
𝑘
) ≥ ∑

𝑘

𝑖=1

1
𝑖
,

hence lim sup𝑛→∞ 𝑟4(𝑛)/𝑛 = ∞.

11. Since 𝑧/(1 − 𝑧) = ∑∞
𝑛=1 𝑧𝑛,

∑
∞

𝑛=1

𝑛𝑙𝑧𝑛

1 − 𝑧𝑛 = ∑
∞

𝑛=1
𝑛𝑙 ∑

∞

𝑚=1
𝑧𝑛𝑚 = ∑

∞

𝑘=1
∑
𝑛∣𝑘

𝑛𝑙𝑧𝑘 = ∑
∞

𝑘=1
𝜎𝑙(𝑘)𝑧𝑘.

12. (a) For |𝑞| < 1,

∑
∞

𝑛=1

𝑛𝑞𝑛

1 − 𝑞𝑛 = ∑
∞

𝑛=1
𝜎1(𝑛)𝑞𝑛 = ∑

∞

𝑛=1
∑
∞

𝑚=1
𝑚𝑞𝑛𝑚 = ∑

∞

𝑛=1

𝑞𝑛

(1 − 𝑞𝑛)2 .

(b) Note that

𝜎∗
1(𝑛) = {𝜎1(𝑛) if 𝑛 is not divisible by 4,

𝜎1(𝑛) − 4𝜎1(𝑛/4) if 𝑛 is divisible by 4.

Therefore

∑
∞

𝑛=1

𝑛𝑞𝑛

1 − 𝑞𝑛 − ∑
∞

𝑛=1

4𝑛𝑞𝑛

1 − 𝑞4𝑛 = ∑
∞

𝑛=1

𝑞𝑛

(1 − 𝑞𝑛)2 − 4 ∑
∞

𝑛=1

𝑞4𝑛

(1 − 𝑞4𝑛)2

= ∑
∞

𝑛=1
𝜎1(𝑛)𝑞𝑛 − 4 ∑

4∣𝑛
𝜎1(

𝑛
4
)𝑞𝑛

= ∑
∞

𝑛=1
𝜎∗

1(𝑛)𝑞𝑛.

(c) Left hand side is equal to ∑∞
𝑛=0 𝑟4(𝑛)𝑞𝑛. Observe that right hand side is

∑
∞

𝑛=1

𝑞𝑛

(1 + (−1)𝑛𝑞𝑛)2 = ∑
∞

𝑛=1

𝑞𝑛

(1 − 𝑞𝑛)2 + ∑
∞

𝑛=1
( 𝑞2𝑛

(1 + 𝑞2𝑛)2 − 𝑞2𝑛

(1 − 𝑞2𝑛)2 )

= ∑
∞

𝑛=1

𝑞𝑛

(1 − 𝑞𝑛)2 − 4 ∑
∞

𝑛=1

𝑞4𝑛

(1 − 𝑞4𝑛)2

= ∑
∞

𝑛=1
𝜎∗

1(𝑛)𝑞𝑛.

Hence the identity is equivalent to
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∑
∞

𝑛=0
𝑟4(𝑛)𝑞𝑛 = 1 + 8 ∑

∞

𝑛=1
𝜎∗

1(𝑛)𝑞𝑛,

which is also equivalent to four-squares theorem 𝑟4(𝑛) = 8𝜎∗
1(𝑛) (𝑛 ≥ 1).

85


	Preface
	History

	Chapter 1. Preliminaries to Complex Analysis
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.
	25.
	26.

	Chapter 2. Cauchy's Theorem and Its Applications
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.

	Chapter 3. Meromorphic Functions and the Logarithm
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.

	Chapter 4. The Fourier Transform
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.

	Chapter 5. Entire Functions
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.

	Chapter 6. The Gamma and Zeta Functions
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.

	Chapter 7. The Zeta Function and Prime Number Theorem
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.

	Chapter 8. Conformal Mappings
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.
	13.
	14.
	15.
	16.
	17.
	18.
	19.
	20.
	21.
	22.
	23.
	24.

	Chapter 9. An Introduction to Elliptic Functions
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.

	Chapter 10. Applications of Theta Functions
	1.
	2.
	3.
	4.
	5.
	6.
	7.
	8.
	9.
	10.
	11.
	12.


